Skip to content

How does the function ModelInstanceState::ProcessRequests do inference for each request? #31

Open
@songkq

Description

@songkq

@zzk0 @hjchen2 @mosout Hi, I'm confusing whether SetInputTensors and Execute functions serve for only one request or all the requests simultaneously. If they serve for all the requests, how is parallelism implemented?Could you please give some advice?

  // collect input
  std::vector<const char*> input_names;
  std::vector<oneflow_api::Tensor> input_tensors;
  std::vector<BackendMemory*> input_memories;
  bool cuda_copy = false;
  BackendInputCollector collector(
      requests, request_count, &responses, model_state_->TritonMemoryManager(),
      model_state_->EnablePinnedInput(), CudaStream());
  SetInputTensors(
      total_batch_size, requests, request_count, &responses, &collector,
      &input_names, &input_tensors, &input_memories, &cuda_copy);
  SynchronizeStream(CudaStream(), cuda_copy);

  // execute
  uint64_t compute_start_ns = 0;
  SET_TIMESTAMP(compute_start_ns);

  std::vector<oneflow_api::Tensor> output_tensors;
  Execute(&responses, request_count, &input_tensors, &output_tensors);

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions