Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add higher order derivative for pool #9096

Merged
merged 7 commits into from
Sep 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
158 changes: 158 additions & 0 deletions oneflow/core/autograd/higher_order_gradient_funcs/avg_pool.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
/*
Copyright 2020 The OneFlow Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "oneflow/core/common/maybe.h"
#include "oneflow/core/framework/op_expr_grad_function.h"
#include "oneflow/core/functional/functional.h"
#include "oneflow/core/common/container_util.h"

namespace oneflow {
namespace one {

struct AdaptiveAvgPoolNDGradGradCaptureState : public AutoGradCaptureState {
bool input_requires_grad = false;
bool grad_requires_grad = false;
std::vector<int64_t> pool_output_size;
};

template<int ndims>
class AdaptiveAvgPoolNdNdGradGrad
: public OpExprGradFunction<AdaptiveAvgPoolNDGradGradCaptureState> {
public:
Maybe<void> Init(const OpExpr& op) override { return Maybe<void>::Ok(); }

Maybe<void> Capture(AdaptiveAvgPoolNDGradGradCaptureState* ctx, const TensorTuple& inputs,
const TensorTuple& outputs, const AttrMap& attrs) const override {
// dy, x
CHECK_EQ_OR_RETURN(inputs.size(), 2); // NOLINT(maybe-need-error-msg)
CHECK_EQ_OR_RETURN(outputs.size(), 1); // NOLINT(maybe-need-error-msg)

ctx->grad_requires_grad = inputs[0]->requires_grad();
ctx->input_requires_grad = inputs[1]->requires_grad();
if (ctx->grad_requires_grad) {
const auto& grad_shape = *inputs[0]->shape();
if (ndims == 1) {
ctx->pool_output_size = {grad_shape[grad_shape.size() - 1]};
} else if (ndims == 2) {
ctx->pool_output_size = {grad_shape[grad_shape.size() - 2],
grad_shape[grad_shape.size() - 1]};
} else if (ndims == 3) {
ctx->pool_output_size = {grad_shape[grad_shape.size() - 3],
grad_shape[grad_shape.size() - 2],
grad_shape[grad_shape.size() - 1]};
} else {
UNIMPLEMENTED_THEN_RETURN();
}
}
return Maybe<void>::Ok();
}

Maybe<void> Apply(const AdaptiveAvgPoolNDGradGradCaptureState* ctx, const TensorTuple& out_grads,
TensorTuple* in_grads) const override {
CHECK_EQ_OR_RETURN(out_grads.size(), 1); // NOLINT(maybe-need-error-msg)
in_grads->resize(2);

if (ctx->grad_requires_grad) {
if (ndims == 1) {
(*in_grads)[0] = JUST(functional::AdaptiveAvgPool1D(out_grads[0], ctx->pool_output_size));
} else if (ndims == 2) {
(*in_grads)[0] = JUST(functional::AdaptiveAvgPool2D(out_grads[0], ctx->pool_output_size));
} else if (ndims == 3) {
(*in_grads)[0] = JUST(functional::AdaptiveAvgPool3D(out_grads[0], ctx->pool_output_size));
} else {
UNIMPLEMENTED_THEN_RETURN();
}
}
if (ctx->input_requires_grad) { (*in_grads)[1] = JUST(functional::ZerosLike(out_grads[0])); }
return Maybe<void>::Ok();
}
};

struct AvgPoolGradGradCaptureState : public AutoGradCaptureState {
bool input_requires_grad = false;
bool grad_requires_grad = false;

std::string data_format;
std::vector<int32_t> padding;
std::vector<int32_t> kernel_size;
std::vector<int32_t> stride;
bool ceil_mode = false;
bool count_include_pad = false;
int32_t divisor_override = 0;
};

class AvgPoolNdGradGrad : public OpExprGradFunction<AvgPoolGradGradCaptureState> {
public:
virtual ~AvgPoolNdGradGrad() = default;
Maybe<void> Init(const OpExpr& op) override {
const auto* fw_op_expr = dynamic_cast<const UserOpExpr*>(&op);
CHECK_NOTNULL_OR_RETURN(fw_op_expr); // NOLINT(maybe-need-error-msg)
base_attrs_ = MakeAttrMapFromUserOpConf(fw_op_expr->proto());
return Maybe<void>::Ok();
}
Maybe<void> Capture(AvgPoolGradGradCaptureState* ctx, const TensorTuple& inputs,
const TensorTuple& outputs, const AttrMap& attrs) const override {
// dy, x
CHECK_EQ_OR_RETURN(inputs.size(), 2); // NOLINT(maybe-need-error-msg)
CHECK_EQ_OR_RETURN(outputs.size(), 1); // NOLINT(maybe-need-error-msg)

ctx->grad_requires_grad = inputs[0]->requires_grad();
ctx->input_requires_grad = inputs[1]->requires_grad();

ComposedAttrMap composed_attrs(attrs, base_attrs_);
ctx->data_format = JUST(composed_attrs.GetAttr<std::string>("data_format"));
ctx->padding = JUST(composed_attrs.GetAttr<std::vector<int32_t>>("padding"));
ctx->kernel_size = JUST(composed_attrs.GetAttr<std::vector<int32_t>>("kernel_size"));
ctx->stride = JUST(composed_attrs.GetAttr<std::vector<int32_t>>("stride"));
ctx->ceil_mode = JUST(composed_attrs.GetAttr<bool>("ceil_mode"));
ctx->count_include_pad = JUST(composed_attrs.GetAttr<bool>("count_include_pad"));
ctx->divisor_override = JUST(composed_attrs.GetAttr<int32_t>("divisor_override"));

return Maybe<void>::Ok();
}
Maybe<void> Apply(const AvgPoolGradGradCaptureState* ctx, const TensorTuple& out_grads,
TensorTuple* in_grads) const override {
CHECK_EQ_OR_RETURN(out_grads.size(), 1); // NOLINT(maybe-need-error-msg)
in_grads->resize(2);

if (ctx->grad_requires_grad) {
int32_t ndims = ctx->kernel_size.size();
const auto pool_op =
(ndims == 1 ? functional::AvgPool1D
: (ndims == 2 ? functional::AvgPool2D
: (ndims == 3 ? functional::AvgPool3D : nullptr)));
CHECK_NOTNULL_OR_RETURN(pool_op); // NOLINT(maybe-need-error-msg)
(*in_grads)[0] =
JUST(pool_op(out_grads[0], ctx->kernel_size, ctx->stride, ctx->padding, ctx->ceil_mode,
ctx->count_include_pad, ctx->divisor_override, ctx->data_format));
}
if (ctx->input_requires_grad) { (*in_grads)[1] = JUST(functional::ZerosLike(out_grads[0])); }

return Maybe<void>::Ok();
}

private:
AttrMap base_attrs_;
};

REGISTER_OP_EXPR_GRAD_FUNCTION("avg_pool_1d_grad", AvgPoolNdGradGrad);
REGISTER_OP_EXPR_GRAD_FUNCTION("avg_pool_2d_grad", AvgPoolNdGradGrad);
REGISTER_OP_EXPR_GRAD_FUNCTION("avg_pool_3d_grad", AvgPoolNdGradGrad);
REGISTER_OP_EXPR_GRAD_FUNCTION("adaptive_avg_pool1d_grad", AdaptiveAvgPoolNdNdGradGrad<1>);
REGISTER_OP_EXPR_GRAD_FUNCTION("adaptive_avg_pool2d_grad", AdaptiveAvgPoolNdNdGradGrad<2>);
REGISTER_OP_EXPR_GRAD_FUNCTION("adaptive_avg_pool3d_grad", AdaptiveAvgPoolNdNdGradGrad<3>);
} // namespace one
} // namespace oneflow
68 changes: 68 additions & 0 deletions oneflow/core/autograd/higher_order_gradient_funcs/max_pool.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/*
Copyright 2020 The OneFlow Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "oneflow/core/framework/op_expr_grad_function.h"
#include "oneflow/core/functional/functional.h"
#include "oneflow/core/common/container_util.h"

namespace oneflow {
namespace one {

struct MaxPoolGradGradCaptureState : public AutoGradCaptureState {
bool grad_requires_grad = false;
bool input_requires_grad = false;
};

template<int ndims>
class MaxPoolNdGradGrad : public OpExprGradFunction<MaxPoolGradGradCaptureState> {
public:
Maybe<void> Init(const OpExpr& op) override { return Maybe<void>::Ok(); }

Maybe<void> Capture(MaxPoolGradGradCaptureState* ctx, const TensorTuple& inputs,
const TensorTuple& outputs, const AttrMap& attrs) const override {
// dy, x, indice
CHECK_EQ_OR_RETURN(inputs.size(), 3); // NOLINT(maybe-need-error-msg)
CHECK_EQ_OR_RETURN(outputs.size(), 1); // NOLINT(maybe-need-error-msg)

ctx->grad_requires_grad = inputs[0]->requires_grad();
ctx->input_requires_grad = inputs[1]->requires_grad();
if (ctx->grad_requires_grad) { ctx->SaveTensorForBackward(inputs[2]); }

return Maybe<void>::Ok();
}

Maybe<void> Apply(const MaxPoolGradGradCaptureState* ctx, const TensorTuple& out_grads,
TensorTuple* in_grads) const override {
CHECK_EQ_OR_RETURN(out_grads.size(), 1); // NOLINT(maybe-need-error-msg)
in_grads->resize(3);

if (ctx->grad_requires_grad) {
const auto& indices = JUST(VectorAt(ctx->SavedTensors(), 0));
(*in_grads)[0] = JUST(functional::MaxPoolNdGradGrad(out_grads[0], indices, ndims));
}
if (ctx->input_requires_grad) { (*in_grads)[1] = JUST(functional::ZerosLike(out_grads[0])); }
return Maybe<void>::Ok();
}
};

REGISTER_OP_EXPR_GRAD_FUNCTION("max_pool_1d_grad", MaxPoolNdGradGrad<1>);
REGISTER_OP_EXPR_GRAD_FUNCTION("max_pool_2d_grad", MaxPoolNdGradGrad<2>);
REGISTER_OP_EXPR_GRAD_FUNCTION("max_pool_3d_grad", MaxPoolNdGradGrad<3>);
// REGISTER_OP_EXPR_GRAD_FUNCTION("adaptive_max_pool1d_grad", MaxPoolNdGradGrad<1>);
// REGISTER_OP_EXPR_GRAD_FUNCTION("adaptive_max_pool2d_grad", MaxPoolNdGradGrad<2>);
// REGISTER_OP_EXPR_GRAD_FUNCTION("adaptive_max_pool3d_grad", MaxPoolNdGradGrad<3>);
} // namespace one
} // namespace oneflow
4 changes: 4 additions & 0 deletions oneflow/core/functional/functional_api.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2720,4 +2720,8 @@

- name: "sigmoid_grad_grad"
signature: "Tensor (Tensor y, Tensor dydx) => SigmoidGradGrad"
bind_python: False

- name: "max_pool_grad_grad"
signature: "Tensor (Tensor dydx, Tensor indices, Int32 ndims) => MaxPoolNdGradGrad"
bind_python: False
20 changes: 20 additions & 0 deletions oneflow/core/functional/impl/higher_derivative_functor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -478,6 +478,25 @@ class CeluGradGradFunctor {
}
};

class MaxPoolNdGradGradFunctor {
public:
Maybe<Tensor> operator()(const std::shared_ptr<Tensor>& dydx,
const std::shared_ptr<Tensor>& indices, const int ndims) const {
if (indices->nelement()) {
Shape view_shape(indices->shape()->begin(), indices->shape()->end() - ndims);
view_shape.push_back(-1);
auto indices_view = JUST(functional::Reshape(indices, view_shape));
auto outgrad_view = JUST(functional::Reshape(dydx, view_shape));
return functional::sequence_function(functional::DimGather)
.then(std::bind(functional::Reshape, std::placeholders::_1, *indices->shape()))
.call(outgrad_view, -1, indices_view, /*sparse_grad=*/false);
} else {
// empty inputs, return 0size tensor
return functional::ZerosLike(indices);
}
}
};

class MishGradGradFunctor {
public:
// y = x ∗ tanh(softplus(x))
Expand Down Expand Up @@ -566,6 +585,7 @@ ONEFLOW_FUNCTION_LIBRARY(m) {
m.add_functor<impl::SoftplusGradGradFunctor>("SoftplusGradGrad");
m.add_functor<impl::EluGradGradFunctor>("EluGradGrad");
m.add_functor<impl::CeluGradGradFunctor>("CeluGradGrad");
m.add_functor<impl::MaxPoolNdGradGradFunctor>("MaxPoolNdGradGrad");
m.add_functor<impl::MishGradGradFunctor>("MishGradGrad");
m.add_functor<impl::GeluGradGradFunctor>("GeluGradGrad");
}
Expand Down
12 changes: 6 additions & 6 deletions oneflow/core/functional/impl/nn_grad_functor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ class MaxPoolNdGradFunctor {
for (int ndims = 1; ndims <= 3; ++ndims) {
const auto& op_type_name = GetOpTypeName(ndims);
op_expr_map_[op_type_name] = CHECK_JUST(
one::OpBuilder(op_type_name).Input("x").Input("indice").Input("dy").Output("dx").Build());
one::OpBuilder(op_type_name).Input("dy").Input("x").Input("indice").Output("dx").Build());
}
}
static std::string GetOpTypeName(const int32_t& ndims) {
Expand All @@ -157,7 +157,7 @@ class MaxPoolNdGradFunctor {
<< Error::RuntimeError() << "Encounter unsupported op " << op_type_name
<< " in MaxPoolNdGradFunctor.";
CHECK_NOTNULL_OR_RETURN(it->second); // NOLINT(maybe-need-error-msg)
return OpInterpUtil::Dispatch<Tensor>(*it->second, {x, indice, dy}, attrs);
return OpInterpUtil::Dispatch<Tensor>(*it->second, {dy, x, indice}, attrs);
}

protected:
Expand Down Expand Up @@ -211,7 +211,7 @@ class AdaptivePoolNdGradFunctor {
for (int ndims = 1; ndims <= 3; ++ndims) {
const auto& op_type_name = GetOpTypeName(mode, ndims);
op_expr_map_[op_type_name] =
CHECK_JUST(one::OpBuilder(op_type_name).Input("x").Input("dy").Output("dx").Build());
CHECK_JUST(one::OpBuilder(op_type_name).Input("dy").Input("x").Output("dx").Build());
}
}
}
Expand All @@ -227,7 +227,7 @@ class AdaptivePoolNdGradFunctor {
<< Error::RuntimeError() << "Encounter unsupported op " << op_type_name
<< " in AdaptivePoolNdGradFunctor.";
CHECK_NOTNULL_OR_RETURN(it->second); // NOLINT(maybe-need-error-msg)
return OpInterpUtil::Dispatch<Tensor>(*it->second, {x, dy});
return OpInterpUtil::Dispatch<Tensor>(*it->second, {dy, x});
}

protected:
Expand Down Expand Up @@ -763,7 +763,7 @@ class AvgPoolNdGradFunctor {
for (int ndims = 1; ndims <= 3; ++ndims) {
const auto& op_type_name = GetOpTypeName(ndims);
op_expr_map_[op_type_name] =
CHECK_JUST(one::OpBuilder(op_type_name).Input("x").Input("dy").Output("dx").Build());
CHECK_JUST(one::OpBuilder(op_type_name).Input("dy").Input("x").Output("dx").Build());
}
}
static std::string GetOpTypeName(const int32_t& ndims) {
Expand All @@ -786,7 +786,7 @@ class AvgPoolNdGradFunctor {
<< Error::RuntimeError() << "Encounter unsupported op " << op_type_name
<< " in AvgPoolNdGradFunctor.";
CHECK_NOTNULL_OR_RETURN(it->second); // NOLINT(maybe-need-error-msg)
return OpInterpUtil::Dispatch<Tensor>(*it->second, {x, dy}, attrs);
return OpInterpUtil::Dispatch<Tensor>(*it->second, {dy, x}, attrs);
}

protected:
Expand Down
Loading