Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ops template auto gen #7945

Merged
merged 21 commits into from
Apr 1, 2022
Merged

Add ops template auto gen #7945

merged 21 commits into from
Apr 1, 2022

Conversation

BBuf
Copy link
Contributor

@BBuf BBuf commented Apr 1, 2022

自动为OneFlow的API生成版本状态的脚本,下面是这个脚本生成的README.md:

image

@BBuf
Copy link
Contributor Author

BBuf commented Apr 1, 2022

后续在ci里面运行一次这个脚本就可以动态生成API的状态了。

@BBuf BBuf added the api label Apr 1, 2022
@github-actions
Copy link
Contributor

github-actions bot commented Apr 1, 2022

Code got formatted by CI. Please request CI again if you still want to have this PR merged. If the PR is from a forked repo, please download the patch files from the GitHub Actions web page and apply them locally.

@BBuf BBuf requested review from oneflow-ci-bot and removed request for oneflow-ci-bot April 1, 2022 10:28
@github-actions
Copy link
Contributor

github-actions bot commented Apr 1, 2022

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/7945/

@github-actions
Copy link
Contributor

github-actions bot commented Apr 1, 2022

Speed stats:
GPU Name: GeForce GTX 1080 

✔️ OneFlow resnet50 time: 128.4ms (= 12839.7ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 139.6ms (= 13964.3ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.09 (= 139.6ms / 128.4ms)

✔️ OneFlow resnet50 time: 80.0ms (= 8004.3ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 83.3ms (= 8330.6ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.04 (= 83.3ms / 80.0ms)

OneFlow resnet50 time: 54.3ms (= 10856.9ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 57.5ms (= 11494.0ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.06 (= 57.5ms / 54.3ms)

OneFlow resnet50 time: 42.9ms (= 8582.4ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 54.4ms (= 10878.5ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.27 (= 54.4ms / 42.9ms)

OneFlow resnet50 time: 38.1ms (= 7617.2ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 43.2ms (= 8633.3ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.13 (= 43.2ms / 38.1ms)

OneFlow swin dataloader time: 0.253s (= 50.654s / 200, num_workers=1)
PyTorch swin dataloader time: 0.250s (= 49.908s / 200, num_workers=1)
✔️ Relative speed: 0.985 (= 0.250s / 0.253s)

OneFlow swin dataloader time: 0.066s (= 13.216s / 200, num_workers=4)
PyTorch swin dataloader time: 0.066s (= 13.280s / 200, num_workers=4)
✔️ Relative speed: 1.005 (= 0.066s / 0.066s)

OneFlow swin dataloader time: 0.037s (= 7.384s / 200, num_workers=8)
PyTorch swin dataloader time: 0.036s (= 7.160s / 200, num_workers=8)
✔️ Relative speed: 0.970 (= 0.036s / 0.037s)

✔️ OneFlow resnet50 time: 135.7ms (= 13566.9ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 164.2ms (= 16417.2ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.21 (= 164.2ms / 135.7ms)

OneFlow resnet50 time: 90.0ms (= 9004.8ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 101.5ms (= 10148.1ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.13 (= 101.5ms / 90.0ms)

OneFlow resnet50 time: 62.1ms (= 12425.2ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 78.5ms (= 15704.3ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.26 (= 78.5ms / 62.1ms)

OneFlow resnet50 time: 52.6ms (= 10525.2ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 66.8ms (= 13351.2ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.27 (= 66.8ms / 52.6ms)

OneFlow resnet50 time: 49.4ms (= 9879.1ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 72.9ms (= 14578.0ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.48 (= 72.9ms / 49.4ms)

@github-actions
Copy link
Contributor

github-actions bot commented Apr 1, 2022

CI failed when running job: cuda-module. PR label automerge has been removed

@github-actions github-actions bot removed the automerge label Apr 1, 2022
@BBuf BBuf requested review from oneflow-ci-bot and removed request for oneflow-ci-bot April 1, 2022 11:46
@BBuf BBuf added the automerge label Apr 1, 2022
@oneflow-ci-bot oneflow-ci-bot requested review from oneflow-ci-bot and removed request for oneflow-ci-bot April 1, 2022 14:51
@github-actions
Copy link
Contributor

github-actions bot commented Apr 1, 2022

View latest API docs preview at: https://staging.oneflow.info/docs/Oneflow-Inc/oneflow/pr/7945/

@github-actions
Copy link
Contributor

github-actions bot commented Apr 1, 2022

Speed stats:
GPU Name: GeForce GTX 1080 

✔️ OneFlow resnet50 time: 128.3ms (= 12834.4ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 140.0ms (= 13996.4ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.09 (= 140.0ms / 128.3ms)

✔️ OneFlow resnet50 time: 76.8ms (= 7677.0ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 83.7ms (= 8375.0ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.09 (= 83.7ms / 76.8ms)

OneFlow resnet50 time: 53.1ms (= 10619.6ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 60.9ms (= 12188.0ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.15 (= 60.9ms / 53.1ms)

OneFlow resnet50 time: 43.0ms (= 8608.9ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 46.7ms (= 9342.8ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.09 (= 46.7ms / 43.0ms)

OneFlow resnet50 time: 38.8ms (= 7765.2ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 40.3ms (= 8052.8ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.04 (= 40.3ms / 38.8ms)

OneFlow swin dataloader time: 0.253s (= 50.654s / 200, num_workers=1)
PyTorch swin dataloader time: 0.257s (= 51.422s / 200, num_workers=1)
✔️ Relative speed: 1.015 (= 0.257s / 0.253s)

OneFlow swin dataloader time: 0.071s (= 14.300s / 200, num_workers=4)
PyTorch swin dataloader time: 0.067s (= 13.411s / 200, num_workers=4)
✔️ Relative speed: 0.938 (= 0.067s / 0.071s)

OneFlow swin dataloader time: 0.036s (= 7.250s / 200, num_workers=8)
PyTorch swin dataloader time: 0.038s (= 7.632s / 200, num_workers=8)
✔️ Relative speed: 1.053 (= 0.038s / 0.036s)

✔️ OneFlow resnet50 time: 135.7ms (= 13568.3ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 156.4ms (= 15641.8ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.15 (= 156.4ms / 135.7ms)

OneFlow resnet50 time: 86.9ms (= 8693.3ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 104.7ms (= 10472.0ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.20 (= 104.7ms / 86.9ms)

OneFlow resnet50 time: 63.0ms (= 12606.8ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 77.3ms (= 15468.1ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.23 (= 77.3ms / 63.0ms)

OneFlow resnet50 time: 51.8ms (= 10370.0ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 66.8ms (= 13356.7ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.29 (= 66.8ms / 51.8ms)

OneFlow resnet50 time: 51.9ms (= 10373.1ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 62.8ms (= 12553.6ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.21 (= 62.8ms / 51.9ms)

@mergify mergify bot merged commit efe76f6 into master Apr 1, 2022
@mergify mergify bot deleted the add_ops_template_auto_gen branch April 1, 2022 20:19
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants