Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

consistent_squeeze_stack_stateful_kernel_with_cache_test #7289

Merged

Conversation

clackhan
Copy link
Contributor

添加squeeze、stack和stateful_kernel_with_cache consistent测试

hjchen2 and others added 30 commits January 5, 2022 18:42
@clackhan clackhan requested review from oneflow-ci-bot and removed request for oneflow-ci-bot March 22, 2022 22:50
@github-actions
Copy link
Contributor

Speed stats:
GPU Name: GeForce GTX 1080 

✔️ OneFlow resnet50 time: 128.4ms (= 12836.5ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 141.7ms (= 14170.9ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.10 (= 141.7ms / 128.4ms)

✔️ OneFlow resnet50 time: 78.4ms (= 7840.9ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 83.9ms (= 8387.9ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.07 (= 83.9ms / 78.4ms)

OneFlow resnet50 time: 51.4ms (= 10280.6ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 58.6ms (= 11720.2ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.14 (= 58.6ms / 51.4ms)

OneFlow resnet50 time: 43.1ms (= 8617.3ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 43.6ms (= 8716.0ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.01 (= 43.6ms / 43.1ms)

OneFlow resnet50 time: 39.5ms (= 7908.8ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 39.3ms (= 7857.0ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 0.99 (= 39.3ms / 39.5ms)

md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
build_dataset >>>>>> ImageFolder
build_dataset >>>>>> ImageFolder
✔️ Relative speed: 0.99 (= 50.5s / 50.0s)

md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
build_dataset >>>>>> ImageFolder
build_dataset >>>>>> ImageFolder
✔️ Relative speed: 1.02 (= 13.2s / 13.6s)

md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
build_dataset >>>>>> ImageFolder
build_dataset >>>>>> ImageFolder
✔️ Relative speed: 0.96 (= 7.6s / 7.3s)

✔️ OneFlow resnet50 time: 135.7ms (= 13573.2ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 156.6ms (= 15661.2ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.15 (= 156.6ms / 135.7ms)

OneFlow resnet50 time: 88.2ms (= 8820.0ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 100.7ms (= 10070.6ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.14 (= 100.7ms / 88.2ms)

OneFlow resnet50 time: 62.9ms (= 12578.2ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 85.3ms (= 17056.6ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.36 (= 85.3ms / 62.9ms)

OneFlow resnet50 time: 54.1ms (= 10824.0ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 66.4ms (= 13275.6ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.23 (= 66.4ms / 54.1ms)

OneFlow resnet50 time: 48.9ms (= 9772.6ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 61.8ms (= 12358.6ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.26 (= 61.8ms / 48.9ms)

@github-actions
Copy link
Contributor

CI failed when running job: cuda-module. PR label automerge has been removed

@clackhan clackhan requested review from oneflow-ci-bot and removed request for oneflow-ci-bot March 23, 2022 08:37
@clackhan clackhan added the need-highest-priority Only add this when you really need it!!! Will block all other PRs. label Mar 23, 2022
@clackhan clackhan requested review from oneflow-ci-bot and removed request for oneflow-ci-bot March 23, 2022 22:50
@clackhan clackhan removed the need-highest-priority Only add this when you really need it!!! Will block all other PRs. label Mar 23, 2022
@github-actions
Copy link
Contributor

Speed stats:
GPU Name: GeForce GTX 1080 

✔️ OneFlow resnet50 time: 128.3ms (= 12829.5ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 141.2ms (= 14117.6ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.10 (= 141.2ms / 128.3ms)

✔️ OneFlow resnet50 time: 77.3ms (= 7728.0ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 84.1ms (= 8407.1ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.09 (= 84.1ms / 77.3ms)

OneFlow resnet50 time: 52.8ms (= 10557.1ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 58.1ms (= 11623.5ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.10 (= 58.1ms / 52.8ms)

OneFlow resnet50 time: 41.0ms (= 8203.8ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 46.2ms (= 9232.9ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.13 (= 46.2ms / 41.0ms)

OneFlow resnet50 time: 39.1ms (= 7818.0ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 42.9ms (= 8574.8ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.10 (= 42.9ms / 39.1ms)

md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
build_dataset >>>>>> ImageFolder
build_dataset >>>>>> ImageFolder
✔️ Relative speed: 1.00 (= 50.8s / 50.6s)

md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
build_dataset >>>>>> ImageFolder
build_dataset >>>>>> ImageFolder
✔️ Relative speed: 0.95 (= 13.7s / 13.1s)

md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
md5 /home/ci-user/ci-cache/test_cache/onerec_test/nanodataset.zip 7f5cde8b5a6c411107517ac9b00f29db
build_dataset >>>>>> ImageFolder
build_dataset >>>>>> ImageFolder
✔️ Relative speed: 0.99 (= 7.5s / 7.4s)

✔️ OneFlow resnet50 time: 136.0ms (= 13604.7ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 157.9ms (= 15791.5ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.16 (= 157.9ms / 136.0ms)

OneFlow resnet50 time: 88.2ms (= 8819.0ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 100.1ms (= 10012.4ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.14 (= 100.1ms / 88.2ms)

OneFlow resnet50 time: 61.1ms (= 12225.8ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 80.8ms (= 16164.1ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.32 (= 80.8ms / 61.1ms)

OneFlow resnet50 time: 52.4ms (= 10472.1ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 77.4ms (= 15477.1ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.48 (= 77.4ms / 52.4ms)

OneFlow resnet50 time: 48.9ms (= 9775.6ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 61.6ms (= 12326.7ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.26 (= 61.6ms / 48.9ms)

@mergify mergify bot merged commit a8ae124 into master Mar 24, 2022
@mergify mergify bot deleted the consistent_squeeze_stack_stateful_kernel_with_cache_test branch March 24, 2022 04:17
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants