Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev fused bn functional #6077

Merged
merged 16 commits into from
Sep 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
220 changes: 220 additions & 0 deletions oneflow/core/autograd/gradient_funcs/normalization_add_relu.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,220 @@
/*
Copyright 2020 The OneFlow Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "oneflow/core/framework/attr_map.h"
#include "oneflow/core/framework/dtype.h"
#include "oneflow/core/framework/op_expr_grad_function.h"
#include "oneflow/core/functional/functional.h"

namespace oneflow {
namespace one {

struct NormalizationAddReluGradCaptureState : public AutoGradCaptureState {
int32_t axis = 1;
float epsilon = 1e-5;
bool track_running_stats = true;
bool is_training = true;
bool has_addend = false;
bool x_requires_grad = true;
bool addend_requires_grad = true;
bool gamma_requires_grad = true;
bool beta_requires_grad = true;
};

// training:
// y, mean, inv_variance = normalization_add_relu(x, Optional(add_end), moving_mean,
// moving_variance, gamma, beta, axis=1, epsilon=0.01, momentum=0.9) y, mean, inv_variance =
// normalization_add_relu(x, Optional(add_end), gamma, beta, axis=1, epsilon=0.01, momentum=0.9)

// inference:
// y = normalization_add_relu(x, Optional(add_end), moving_mean, moving_variance, gamma, beta,
// axis=1, epsilon=0.01, momentum=0.9)

class NormalizationAddReluGrad : public OpExprGradFunction<NormalizationAddReluGradCaptureState> {
public:
Maybe<void> Init(const OpExpr& op) override {
const auto* fw_op_expr = dynamic_cast<const UserOpExpr*>(&op);
CHECK_NOTNULL_OR_RETURN(fw_op_expr);
base_attrs_ = MakeAttrMapFromUserOpConf(fw_op_expr->proto());
return Maybe<void>::Ok();
}

Maybe<void> Capture(NormalizationAddReluGradCaptureState* ctx, const TensorTuple& inputs,
const TensorTuple& outputs, const AttrMap& attrs) const override {
// input_size may be 3/4/5/6, as inputs may be
// (x, gamma, beta) or (x, moving_mean, moving_variance, gamma, beta)
// (x, addend, gamma, beta) or (x, addend, moving_mean, moving_variance, gamma, beta)

// ref to track_running_stats false/true
// output_size may be 2 or 4, as outputs may be
// (x, reserve_space) or (x, reserve_space, mean, inv_variance)
// ref to is_training false/true
ctx->x_requires_grad = inputs.at(0)->requires_grad();
std::shared_ptr<Tensor> add_end, gamma, beta;

if (inputs.size() == 3 || inputs.size() == 5) {
add_end = nullptr;
if (inputs.size() == 3) {
gamma = inputs.at(1);
beta = inputs.at(2);
ctx->track_running_stats = false;
} else {
gamma = inputs.at(3);
beta = inputs.at(4);
ctx->track_running_stats = true;
}
ctx->has_addend = false;
} else if (inputs.size() == 4 || inputs.size() == 6) {
add_end = inputs.at(1);
if (inputs.size() == 4) {
gamma = inputs.at(2);
beta = inputs.at(3);
ctx->track_running_stats = false;
} else {
gamma = inputs.at(4);
beta = inputs.at(5);
ctx->track_running_stats = true;
}
ctx->has_addend = true;
ctx->addend_requires_grad = inputs.at(1)->requires_grad();
}

ctx->gamma_requires_grad = gamma->requires_grad();
ctx->beta_requires_grad = beta->requires_grad();
ComposedAttrMap composed_attrs(attrs, base_attrs_);

ctx->axis = JUST(composed_attrs.GetAttr<int32_t>("axis"));
ctx->epsilon = JUST(composed_attrs.GetAttr<float>("epsilon"));
ctx->is_training = JUST(composed_attrs.GetAttr<bool>("training"));

ctx->SaveTensorForBackward(inputs.at(0)); // x 0
ctx->SaveTensorForBackward(gamma); // gamma 1
ctx->SaveTensorForBackward(beta); // beta 2

if (ctx->is_training || !ctx->track_running_stats) {
ctx->SaveTensorForBackward(outputs.at(2)); // mean 3
ctx->SaveTensorForBackward(outputs.at(3)); // inv_variance 4
} else {
if (inputs.size() == 5) {
// without add_end
ctx->SaveTensorForBackward(inputs.at(1)); // moving_mean 3
ctx->SaveTensorForBackward(inputs.at(2)); // moving_variance 4
} else {
CHECK_EQ_OR_RETURN(inputs.size(), 6);
// with add_end
ctx->SaveTensorForBackward(inputs.at(2)); // moving_mean 3
ctx->SaveTensorForBackward(inputs.at(3)); // moving_variance 4
}
}
ctx->SaveTensorForBackward(outputs.at(0)); // y 5
ctx->SaveTensorForBackward(outputs.at(1)); // reserve space 6

return Maybe<void>::Ok();
}

Maybe<void> Apply(const NormalizationAddReluGradCaptureState* ctx, const TensorTuple& out_grads,
TensorTuple* in_grads) const override {
const auto& x = ctx->SavedTensors().at(0); // x
const auto& gamma = ctx->SavedTensors().at(1); // gamma
const auto& beta = ctx->SavedTensors().at(2); // beta
const auto& y_grad = out_grads.at(0);

std::shared_ptr<Tensor> mean, inv_variance;
if (ctx->is_training || !ctx->track_running_stats) {
mean = ctx->SavedTensors().at(3); // mean
inv_variance = ctx->SavedTensors().at(4); // inv_variance
} else {
const auto& moving_mean = ctx->SavedTensors().at(3); // moving_mean
const auto& moving_variance = ctx->SavedTensors().at(4); // moving_variance
const auto& add_eps =
JUST(functional::ScalarAdd(moving_variance, ctx->epsilon, /*inplace=*/false));
mean = moving_mean;
inv_variance = JUST(functional::Rsqrt(add_eps));
}
const auto& y = ctx->SavedTensors().at(5);
const auto& reserve_space = ctx->SavedTensors().at(6);

const auto& results = JUST(functional::NormalizationAddReluGrad(
x, y_grad, mean, inv_variance, gamma, beta, reserve_space, y, ctx->axis, ctx->epsilon));
CHECK_EQ_OR_RETURN(results->size(),
4); // here output includes "gamma_diff" "beta_diff" "dx" "addend_diff"

if (ctx->track_running_stats) {
// The normalization op has 5 inputs which are x, moving_mean, moving_variance, gamma and
// beta. or 6 inputs: x, add_end, moving_mean, moving_variance, gamma and beta.
if (ctx->has_addend) {
in_grads->resize(6);
if (ctx->gamma_requires_grad) {
in_grads->at(4) = results->at(1); // gamma_diff;
}
if (ctx->beta_requires_grad) {
in_grads->at(5) = results->at(2); // beta_diff
}
if (ctx->addend_requires_grad) {
in_grads->at(1) = results->at(3); // add_end_diff
}
} else {
in_grads->resize(5);
if (ctx->gamma_requires_grad) {
in_grads->at(3) = results->at(1); // gamma_diff;
}
if (ctx->beta_requires_grad) {
in_grads->at(4) = results->at(2); // beta_diff
}
}

} else {
// The normalization op has 3 inputs which are x, addend, gamma and beta.
// or has 4 inputs which are x, addend, gamma and beta.
if (ctx->has_addend) {
in_grads->resize(4);
if (ctx->gamma_requires_grad) {
in_grads->at(1) = results->at(1); // gamma_diff;
}
if (ctx->beta_requires_grad) {
in_grads->at(2) = results->at(2); // beta_diff
}
if (ctx->addend_requires_grad) {
in_grads->at(1) = results->at(3); // addend_diff
}
} else {
in_grads->resize(3);
if (ctx->gamma_requires_grad) {
in_grads->at(1) = results->at(1); // gamma_diff;
}
if (ctx->beta_requires_grad) {
in_grads->at(2) = results->at(2); // beta_diff
}
}
}

if (!ctx->x_requires_grad) { return Maybe<void>::Ok(); }
if (ctx->is_training) {
in_grads->at(0) = results->at(0);
return Maybe<void>::Ok();
}

// todo(zzk): add eval mode.
return Maybe<void>::Ok();
}

private:
AttrMap base_attrs_;
};

REGISTER_OP_EXPR_GRAD_FUNCTION("normalization_add_relu", NormalizationAddReluGrad);

} // namespace one
} // namespace oneflow
5 changes: 1 addition & 4 deletions oneflow/core/framework/op_expr.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -299,10 +299,7 @@ class UserOpExprLogicalInferContext final : public UserOpExprInferContext {
UNIMPLEMENTED();
return *(const cfg::NdSbp*)nullptr;
}
int64_t parallel_num() const override {
UNIMPLEMENTED();
return 1;
}
int64_t parallel_num() const override { return 1; }
};

class UserOpExprDeviceInferContext final : public user_op::DeviceInferContext {
Expand Down
13 changes: 13 additions & 0 deletions oneflow/core/functional/functional_api.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,19 @@
Tensor gamma, Float epsilon, Int32 axis) => NormalizationGrad"
bind_python: False

- name: "normalization_add_relu"
signature:
"Tensor (Tensor x, Tensor addend=None, Tensor moving_mean=None, Tensor moving_variance=None,
Tensor gamma, Tensor beta, Int32 axis=1, Float epsilon=1e-5,
Float momentum=0.9, Bool is_training=False) => NormalizationAddRelu"
bind_python: True

- name: "normalization_add_relu_grad"
signature:
"TensorTuple (Tensor x, Tensor dy, Tensor moving_mean, Tensor moving_variance,
Tensor gamma, Tensor beta, Tensor reserve_space, Tensor y, Int32 axis=1, Float epsilon=1e-5) => NormalizationAddReluGrad"
bind_python: False

- name: "arange"
signature: [
"Tensor (Int64 start, Int64 end, Int64 step=1, *, DataType dtype=kInt64,
Expand Down
Loading