Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat graph autograd engine #5296

Merged
merged 18 commits into from
Jun 30, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
18 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
220 changes: 212 additions & 8 deletions oneflow/core/autograd/autograd_engine.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@ See the License for the specific language governing permissions and
limitations under the License.
*/

#include <stack>
#include <queue>
#include "oneflow/core/autograd/autograd_engine.h"
#include "oneflow/core/autograd/autograd_meta.h"
#include "oneflow/core/framework/tensor.h"
Expand Down Expand Up @@ -70,7 +72,7 @@ StackFunctionNode::StackFunctionNode(
for (int i = 0; i < inputs.size(); ++i) {
input_meta_datas_.at(i) = inputs.at(i)->mut_autograd_meta();
if (input_meta_datas_.at(i)->requires_grad()) {
next_functions_->emplace_back(inputs.at(i)->grad_fn_node());
next_functions_->emplace_back(inputs.at(i)->mut_grad_fn_node());
}
}

Expand All @@ -85,14 +87,14 @@ StackFunctionNode::StackFunctionNode(
is_in_stack_ = false;
}

Maybe<void> StackFunctionNode::AccGrad4RetainGradTensor() {
Maybe<void> FunctionNode::AccGrad4RetainGradTensor() {
for (const std::shared_ptr<AutogradMeta>& out : output_meta_datas_) {
if (out->retain_grad()) { JUST(CopyOrAccGrad(out.get(), /*autograd_mode=*/false)); }
}
return Maybe<void>::Ok();
}

Maybe<void> StackFunctionNode::AccGrad4LeafTensor(bool create_graph) {
Maybe<void> FunctionNode::AccGrad4LeafTensor(bool create_graph) {
for (const std::shared_ptr<AutogradMeta>& out : output_meta_datas_) {
if (out->is_leaf() && out->requires_grad()) {
JUST(CopyOrAccGrad(out.get(), /*autograd_mode=*/false));
Expand All @@ -101,19 +103,18 @@ Maybe<void> StackFunctionNode::AccGrad4LeafTensor(bool create_graph) {
return Maybe<void>::Ok();
}

void StackFunctionNode::ReleaseOutTensorArgs() {
void FunctionNode::ReleaseOutTensorArgs() {
for (const std::shared_ptr<AutogradMeta>& meta_data : output_meta_datas_) {
meta_data->now_grad_arg()->Release();
}
}

void StackFunctionNode::ReleaseData() {
// Releases backward function and makes useless tensors release as early as possible
if (!input_meta_datas_.empty()) { backward_fn_.reset(); }
is_in_stack_ = false;
}

Maybe<bool> StackFunctionNode::Apply(bool create_graph) {
Maybe<bool> FunctionNode::Apply(bool create_graph) {
CHECK_NOTNULL_OR_RETURN(backward_fn_.get())
<< "This FunctionNode with name `" << GetOpTypeName() << "` has been released.";
if (!IsReadyToRun(output_meta_datas_)) { return false; }
Expand Down Expand Up @@ -191,10 +192,11 @@ Maybe<TensorTuple> StackAutogradEngine::RunBackwardAndReturnInputsTensorGrad(
if (!retain_graph) { func_node->ReleaseData(); }
}
}
// Gets input grads and resume retain_grad
for (int i = 0; i < inputs.size(); ++i) {
input_now_grads->at(i) = inputs.at(i)->acc_grad();
if (!ori_retain_grad.at(i)) {
inputs.at(i)->mut_acc_grad().reset();
inputs.at(i)->set_acc_grad(nullptr);
inputs.at(i)->set_retain_grad(false);
}
}
Expand Down Expand Up @@ -230,8 +232,210 @@ std::shared_ptr<FunctionNode> StackAutogradEngine::AddBackwardFuncPtr(
return func_node;
}

void GraphFunctionNode::ReleaseData() {
if (!input_meta_datas_.empty()) { backward_fn_.reset(); }
}

GraphFunctionNode::GraphFunctionNode(
const std::string& op_type_name,
const std::shared_ptr<const std::function<Maybe<void>(const TensorTuple&, TensorTuple*, bool)>>&
backward_fn,
const TensorTuple& inputs, const TensorTuple& outputs)
: FunctionNode(op_type_name) {
input_meta_datas_.resize(inputs.size());
next_functions_->reserve(inputs.size());
for (int i = 0; i < inputs.size(); ++i) {
input_meta_datas_.at(i) = inputs.at(i)->mut_autograd_meta();
if (input_meta_datas_.at(i)->requires_grad()) {
next_functions_->emplace_back(inputs.at(i)->mut_grad_fn_node());
}
}

output_meta_datas_.resize(outputs.size());
output_tensor_infos_.reserve(outputs.size());
for (int i = 0; i < outputs.size(); ++i) {
output_meta_datas_.at(i) = outputs.at(i)->mut_autograd_meta();
output_tensor_infos_.emplace_back(TensorInfo(*outputs.at(i)));
}

backward_fn_ = backward_fn;
}

GraphTask::GraphTask(const TensorTuple& outputs, bool retain_graph, bool create_graph)
: retain_graph_(retain_graph), create_graph_(create_graph) {
roots_.reserve(outputs.size());
for (const auto& out_tensor : outputs) {
FunctionNode* node = out_tensor->mut_grad_fn_node().get();
roots_.push_back(node);
dependencies_.insert(std::make_pair(node, 0));
}
}

// Computes the number of dependencies for each FunctionNode
Maybe<void> GraphTask::ComputeDependencies() {
HashSet<FunctionNode*> seen;
std::stack<FunctionNode*> stack;
for (FunctionNode* node : roots_) { stack.push(node); }

while (!stack.empty()) {
FunctionNode* node = stack.top();
stack.pop();
if (/*bool has_seen=*/!seen.insert(node).second) { continue; }
for (const auto& next_grad_fn : *(node->GetNextFunctions())) {
FunctionNode* next_node = next_grad_fn.get();
dependencies_[next_node] += 1;
if (seen.find(next_node) == seen.end()) { stack.push(next_node); }
}
}
return Maybe<void>::Ok();
}

// Computes the number of dependencies for each FunctionNode and prunes useless FunctionNode
// according to input tensors
Maybe<void> GraphTask::ComputeDependenciesAndPruneNode(const TensorTuple& inputs) {
struct NodeFrame {
NodeFrame(FunctionNode* node) : node_(node), next_function_idx_(0) {}
FunctionNode* node_;
size_t next_function_idx_;

FunctionNode* GetNextFunction() {
if (next_function_idx_ < node_->GetNextFunctions()->size()) {
next_function_idx_ += 1;
return node_->GetNextFunctions()->at(next_function_idx_ - 1).get();
} else {
return nullptr;
}
}
};

for (const auto& input : inputs) {
CHECK_NOTNULL_OR_RETURN(input->mut_grad_fn_node().get());
need_execute_.insert(input->mut_grad_fn_node().get());
}

HashSet<FunctionNode*> seen;
std::stack<NodeFrame> stack;

// Note: dfs to determine each FunctionNode should execute or not.
for (const auto& root : roots_) { stack.push(NodeFrame(root)); }
while (!stack.empty()) {
NodeFrame& frame = stack.top();
if (/*bool has_seen=*/seen.find(frame.node_) != seen.end()) {
stack.pop();
continue;
}
if (FunctionNode* node = frame.GetNextFunction()) {
dependencies_[node] += 1;
if (seen.find(node) == seen.end()) {
stack.push(NodeFrame(node));
continue; // recurse
}
} else {
bool need_execute = std::any_of(frame.node_->GetNextFunctions()->begin(),
frame.node_->GetNextFunctions()->end(),
[&](const std::shared_ptr<FunctionNode>& fn) {
return need_execute_.find(fn.get()) != need_execute_.end();
});
if (need_execute) { need_execute_.insert(frame.node_); }
seen.insert(frame.node_);
stack.pop();
}
}
return Maybe<void>::Ok();
}

Maybe<void> GraphTask::Apply(bool save_grad_for_leaf) {
std::queue<FunctionNode*> queue;
for (FunctionNode* node : roots_) {
if (dependencies_[node] == 0) { queue.push(node); }
}

while (!queue.empty()) {
FunctionNode* node = queue.front();
queue.pop();
if (!need_execute_.empty() && need_execute_.find(node) == need_execute_.end()) {
node->ReleaseOutTensorArgs();
continue;
}
if (/*bool not_ready_to_apply=*/!(JUST(node->Apply(create_graph_)))) { continue; }
if (save_grad_for_leaf) { JUST(node->AccGrad4LeafTensor(create_graph_)); }
JUST(node->AccGrad4RetainGradTensor());
node->ReleaseOutTensorArgs();
if (!retain_graph_) { node->ReleaseData(); }

for (const auto& next_grad_fn : *(node->GetNextFunctions())) {
FunctionNode* next_node = next_grad_fn.get();
dependencies_[next_node] -= 1;
if (dependencies_[next_node] == 0) { queue.push(next_node); }
}
}
return Maybe<void>::Ok();
}

Maybe<void> GraphAutogradEngine::RunBackwardAndSaveGrads4LeafTensor(const TensorTuple& outputs,
const TensorTuple& out_grads,
bool retain_graph,
bool create_graph) {
for (int i = 0; i < outputs.size(); ++i) {
JUST(outputs.at(i)->now_grad_arg()->PushPartialTensor(out_grads.at(i)));
}
GraphTask graph_task(outputs, retain_graph, create_graph);
JUST(graph_task.ComputeDependencies());
JUST(graph_task.Apply(/*save_grad_for_leaf=*/true));
return Maybe<void>::Ok();
}

Maybe<TensorTuple> GraphAutogradEngine::RunBackwardAndReturnInputsTensorGrad(
const TensorTuple& outputs, const TensorTuple& inputs, const TensorTuple& out_grads,
bool retain_graph, bool create_graph) {
std::shared_ptr<TensorTuple> input_now_grads = std::make_shared<TensorTuple>(inputs.size());
GraphTask graph_task(outputs, retain_graph, create_graph);
std::vector<bool> ori_retain_grad(inputs.size());
for (int i = 0; i < inputs.size(); ++i) {
ori_retain_grad.at(i) = inputs.at(i)->retain_grad();
inputs.at(i)->set_retain_grad(true);
}
for (int i = 0; i < outputs.size(); ++i) {
JUST(outputs.at(i)->now_grad_arg()->PushPartialTensor(out_grads.at(i)));
}

JUST(graph_task.ComputeDependenciesAndPruneNode(inputs));
JUST(graph_task.Apply(/*save_grad_for_leaf=*/false));

// Gets input grads and resume retain_grad
for (int i = 0; i < inputs.size(); ++i) {
input_now_grads->at(i) = inputs.at(i)->acc_grad();
if (!ori_retain_grad.at(i)) {
inputs.at(i)->set_acc_grad(nullptr);
inputs.at(i)->set_retain_grad(false);
}
}
return input_now_grads;
}

std::shared_ptr<FunctionNode> GraphAutogradEngine::AddBackwardFuncPtr(
const std::string& op_type_name,
const std::shared_ptr<const std::function<Maybe<void>(const TensorTuple&, TensorTuple*, bool)>>&
backward_fn,
const TensorTuple& inputs, TensorTuple* outputs) {
// Firstly push function_node of tensor in stack which is leaf and requires_grad
for (const std::shared_ptr<Tensor>& in_tensor : inputs) {
if (in_tensor->is_leaf() && in_tensor->requires_grad()) {
if (!in_tensor->grad_fn_node()) { AddAccumulateFunctionNode(in_tensor); }
}
}

std::shared_ptr<FunctionNode> func_node =
std::make_shared<GraphFunctionNode>(op_type_name, backward_fn, inputs, *outputs);
for (const std::shared_ptr<Tensor>& out_tensor : *outputs) {
out_tensor->set_grad_fn_node(func_node);
}
return func_node;
}

AutogradEngine* GetThreadLocalAutogradEngine() {
thread_local static StackAutogradEngine autograd_engine;
// thread_local static StackAutogradEngine autograd_engine;
thread_local static GraphAutogradEngine autograd_engine;
return &autograd_engine;
}

Expand Down
Loading