Skip to content

Commit

Permalink
Add nn.AvgPool2d Module (#4623)
Browse files Browse the repository at this point in the history
* need to be reformat

* reformat

* add docstring and refine test case

* add test case

* refine according to comments of wyg

* refine

* add TODO for asymmetric padding

Signed-off-by: daquexian <daquexian566@gmail.com>

Co-authored-by: daquexian <daquexian566@gmail.com>
Co-authored-by: oneflow-ci-bot <69100618+oneflow-ci-bot@users.noreply.github.com>
  • Loading branch information
3 people authored Apr 28, 2021
1 parent fed4e81 commit dfcd1d7
Show file tree
Hide file tree
Showing 2 changed files with 546 additions and 0 deletions.
110 changes: 110 additions & 0 deletions oneflow/python/nn/modules/pooling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from typing import Optional, List, Tuple

import oneflow as flow
from oneflow.python.oneflow_export import oneflow_export
from oneflow.python.nn.module import Module
from oneflow.python.nn.modules.utils import _pair
from oneflow.python.nn.common_types import _size_2_t
from oneflow.python.ops.nn_ops import calc_pool_padding, get_dhw_offset


@oneflow_export("nn.AvgPool2d")
class AvgPool2d(Module):
r"""Performs the 2d-average pooling on the input.
In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
output :math:`(N, C, H_{out}, W_{out})` and `kernel_size` :math:`(kH, kW)`
can be precisely described as:
.. math::
out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
Args:
kernel_size (Union[int, Tuple[int, int]]): An int or list of ints that has length 1, 2. The size of the window for each dimension of the input Tensor.
strides (Union[int, Tuple[int, int]]): An int or list of ints that has length 1, 2. The stride of the sliding window for each dimension of the input Tensor.
padding (Tuple[int, int]): An int or list of ints that has length 1, 2. Implicit zero padding to be added on both sides.
ceil_mode (bool, default to False): When True, will use ceil instead of floor to compute the output shape.
For example:
.. code-block:: python
import oneflow as flow
import numpy as np
of_avgpool2d = flow.nn.AvgPool2d(
kernel_size=(3, 2),
padding=0,
stride=(2, 1),
)
x = flow.Tensor(shape=(1, 1, 10, 10))
of_y = of_avgpool2d(x)
"""

def __init__(
self,
kernel_size: _size_2_t,
stride: Optional[_size_2_t] = None,
padding: _size_2_t = 0,
ceil_mode: bool = False,
count_include_pad: Optional[bool] = None,
divisor_override: Optional[int] = None,
name: Optional[str] = None,
):
super().__init__()
kernel_size = _pair(kernel_size)
stride = _pair(stride) if (stride is not None) else kernel_size

assert isinstance(padding, int) or isinstance(
padding, tuple
), "padding can only int int or tuple of 2 ints."
padding = _pair(padding)
padding = [0, 0, *padding]

assert count_include_pad is None, "count_include_pad not supported yet"
assert divisor_override is None, "divisor_override not supported yet"

_channel_pos = "channels_first"
# TODO(yaochi): align with pytorch when padding is asymmetric
_padding_type, _pads_list = calc_pool_padding(
padding, get_dhw_offset(_channel_pos), 2
)
_padding_before = [pad[0] for pad in _pads_list]
_padding_after = [pad[1] for pad in _pads_list]

self._op = (
flow.builtin_op("avg_pool_2d", name)
.Attr("data_format", _channel_pos)
.Attr("pool_size", kernel_size)
.Attr("strides", stride)
.Attr("ceil_mode", ceil_mode)
.Attr("padding", _padding_type)
.Attr("padding_before", _padding_before)
.Attr("padding_after", _padding_after)
.Input("x")
.Output("y")
.Build()
)

def forward(self, x):
res = self._op(x)[0]
return res
Loading

0 comments on commit dfcd1d7

Please sign in to comment.