This repository contains the analysis of historical insurance claim data for AlphaCare Insurance Solutions (ACIS). The project aims to optimize the marketing strategy and identify "low-risk" targets for potential premium reductions, ultimately attracting new clients.
- Analyze historical insurance claim data
- Optimize marketing strategy
- Discover "low-risk" targets for premium reduction
- Attract new clients
- Exploratory Data Analysis (EDA)
- A/B Hypothesis Testing
- Statistical Modeling
TellCo-Telecom-Analysis/
├── .vscode/
│ └── settings.json
├── .github/
│ └── workflows/
│ └── unittests.yml # GitHub Actions
├── .gitignore # files and folders to be ignored by git
├── requirements.txt # contains dependencies for the project
├── README.md # Documentation for the projects
├── src/
│ └── __init__.py
├── notebooks/
│ ├── __init__.py
| ├── insurance_EDA.ipynb # Jupyter notebook for data cleaning and EDA analysis
| ├── hypothesis_analysis.ipynb # Jupyter notebook for A/B Hypothesis Testing analysis
| ├── statistical_modeling.ipynb # Jupyter notebook for Statistical Modeling analysis
│ └── README.md # Description of notebooks directory
├── tests/
│ └── __init__.py
└── scripts/
├── __init__.py
├── data_processing.py # contains a script for data processing and EDA analysis
├── hypothesis_analysis.py # contains a script file for A/B Hypothesis testing
├── statistical_modeling.py # contains a script file for Statistical modeling
└── README.md # Description of scripts directory
- Clone this repository:
git clone https://github.com/OL-YAD/AlphaCares-Insurance-Analytics.git cd AlphaCares-Insurance-Analytics
- Create a virtual environment:
python -m venv acis_env source acis_env/bin/activate # On Windows, use `acis_env\Scripts\activate`
- Install required packages:
pip install -r requirements.txt
- Activate the virtual environment:
source acis_env/bin/activate # On Windows, use `acis_env\Scripts\activate`
- Launch Jupyter Notebook:
jupyter notebook
- Open the notebooks in the
notebooks/
directory to view or run the analyses.
This project is part of a 10 Academy KAIM2 Week 3 challenge. Contributions, suggestions, and feedback are welcome from fellow participants and mentors.
- 10 Academy for providing the challenge and dataset
For any queries regarding this project, please open an issue in this repository.