An intelligent conversational AI system that helps visitors explore a professional portfolio through natural language queries. Features voice interaction, smart resume querying, and a digital guestbook.
Live Demo: https://ntropy.dev
Clean, modern interface with intelligent tab management and responsive design
Interactive AI assistant providing contextual responses about experience and projects
Used all SOTA guardrailing and finetuning techniques to make sure that the conversation stays focused on the task at hand, i.e, knowing ME!
Advanced voice processing with real-time transcription and natural speech synthesis
- Natural language understanding for portfolio queries
- Hybrid NLP + LLM architecture for fast, accurate responses
- Context-aware follow-up question handling
- Technology-based filtering and search
- Real-time voice-to-text transcription (Whisper)
- Natural text-to-speech responses (ElevenLabs TTS)
- Voice activity detection for seamless conversation
- <500ms local latency for complete voice processing cycles
- All interactions logged to Supabase database
- Session tracking and analytics
- Query history and user insights
- Canvas-based signature drawing
- Emoji selection
- Persistent storage in Supabase
- Infinite scroll pagination
βββββββββββββββ
β Frontend β Next.js + React + Tailwind CSS
β (Vercel) β
ββββββββ¬βββββββ
β
β HTTPS
βΌ
βββββββββββββββ
β Backend β FastAPI + Python
β (HF Spaces) β
ββββββββ¬βββββββ
β
ββββββββΊ Groq LLM (Qwen2.5-7B-Instant)
ββββββββΊ Whisper (Speech-to-Text)
ββββββββΊ ElevenLabs (Text-to-Speech)
ββββββββΊ Supabase (PostgreSQL Database)
Frontend: Next.js 14, React 18, Tailwind CSS, TypeScript
Backend: FastAPI, Python 3.9+, Groq API, Whisper, ElevenLabs TTS
Database: Supabase (PostgreSQL)
Deployment: Vercel (Frontend), Hugging Face Spaces (Backend)
- Node.js 18+
- Python 3.9+
- Supabase Account (free tier)
- Groq API Key (free tier)
- ElevenLabs API Key
git clone https://github.com/Ntropy86/conversational.git
cd conversational/backend
# Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Configure environment
cp .env.example .env
# Edit .env with your keys (GROQ_API_KEY, ELEVENLABS_API_KEY, SUPABASE_URL, SUPABASE_ANON_KEY)
# Run database schema in Supabase SQL Editor (supabase_schema.sql)
# Start backend
python api_server.pycd ../frontend
npm install
# Configure environment
cp .env.example .env.local
# Edit NEXT_PUBLIC_API_URL (default: http://localhost:8000)
# Start frontend
npm run devVisit http://localhost:3000
conversational/
βββ frontend/ # Next.js app (Vercel)
β βββ src/hooks/ # useUniversalVAD, voice processing
β βββ src/context/ # AI agent state management
β βββ src/components/ # Voice interface components
βββ backend/ # FastAPI server (Hugging Face)
β βββ api_server.py # REST endpoints + WebSocket
β βββ llm_service.py # Groq integration
β βββ transcribe_service.py # Whisper STT processing
β βββ tts_service.py # ElevenLabs TTS synthesis
β βββ resume_query_processor.py # NLP + RAG implementation
βββ hf-backend/ # Production deployment
βββ docs/ # Documentation
βββ screenshots/ # Demo images
βββ backend/ # Session fix guide
- Create Supabase project: supabase.com
- Run
backend/supabase_schema.sqlin SQL Editor - Get credentials from Settings β API
- Add to
.env:SUPABASE_URLandSUPABASE_ANON_KEY
Frontend (Vercel):
cd frontend
vercel
# Add NEXT_PUBLIC_API_URL in Vercel dashboardBackend (Hugging Face):
See hf-backend/HUGGINGFACE_DEPLOYMENT.md for full guide
- Session Fix Guide:
docs/backend/SESSION_FIX_SUMMARY.md - API Docs:
http://localhost:8000/docs(when running) - HF Deployment:
hf-backend/HUGGINGFACE_DEPLOYMENT.md
- Fork the repository
- Create feature branch (
git checkout -b feature/name) - Commit changes (
git commit -m 'Add feature') - Push (
git push origin feature/name) - Open Pull Request
MIT License - see LICENSE file for details
Groq β’ Supabase β’ Hugging Face β’ Vercel β’ OpenAI Whisper β’ ElevenLabs
Created by Ntropy86
β Star this repo if you found it helpful!
- HF Deployment:
hf-backend/HUGGINGFACE_DEPLOYMENT.md
- Fork the repository
- Create feature branch (
git checkout -b feature/name) - Commit changes (
git commit -m 'Add feature') - Push (
git push origin feature/name) - Open Pull Request
MIT License - see LICENSE file for details
Groq β’ Supabase β’ Hugging Face β’ Vercel β’ OpenAI Whisper β’ Edge TTS
Created by Ntropy86
β Star this repo if you found it helpful!