Skip to content

MOABB bibliography

Sylvain Chevallier edited this page Nov 15, 2023 · 24 revisions

To cite MOABB, you could use the following paper:

Vinay Jayaram and Alexandre Barachant. "MOABB: trustworthy algorithm benchmarking for BCIs." Journal of neural engineering 15.6 (2018): 066011. DOI

Papers using MOABB

To explore academic works that cite/use MOABB you can check out the Connected Papers Link

2023

  • Dolzhikova, I., Abibullaev, B., & Zollanvari, A. (2023). A Jackknifed-inspired deep learning approach to subject-independent classification of EEG. Pattern Recognition Letters.
  • Gwon, D., Won, K., Song, M., Nam, C. S., Jun, S. C., & Ahn, M. (2023). Review of public motor imagery and execution datasets in brain-computer interfaces. Frontiers in Human Neuroscience.
  • Xu, D., Tang, F., Li, Y., Zhang, Q., & Feng, X. (2023). An Analysis of Deep Learning Models in SSVEP-Based BCI: A Survey. Brain Sciences, 13(3), 483. paper
  • Deny, P., & Choi, K. W. (2023) A Study on Graph Transformer-based Network for Brain-Computer Interface. paper
  • Carrara, I., & Papadopoulo, T. (2023). Classification of BCI-EEG based on augmented covariance matrix. arXiv.
  • Andreev, A., & Cattan, G. (2023). Quantum Support Vector Machine Applied to the Classication of EEG Signals with Riemanian Geometry (HAL)[https://hal.science/hal-03939121/document]
  • E. Fallenius, L. Karlsson, (2023). Tensor Decompositions of EEG Signals for Transfer Learning Applications, Tech Report
  • Hu, H., Yue, K., Guo, M., Lu, K., & Liu, Y. (2023). Subject Separation Network for Reducing Calibration Time of MI-Based BCI. Brain Sciences, 13(2), 221.

2022

  • Bleuzé, A., Mattout, J., & Congedo, M. (2022). Tangent space alignment: Transfer learning for Brain-Computer Interface. Frontiers in Human Neuroscience.

  • Barthélemy, Q., Chevallier, S., Bertrand-Lalo, R., & Clisson, P. (2022). End-to-end P300 BCI using Bayesian accumulation of Riemannian probabilities. Brain-Computer Interfaces

  • Kobler, R. J., Hirayama, J. I., Zhao, Q., & Kawanabe, M. (2022). SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG. NeurIPS

  • Fang, Y., Yap, P. T., Lin, W., Zhu, H., & Liu, M. (2022). Source-Free Unsupervised Domain Adaptation: A Survey. arXiv preprint.

  • Wilson, D., Gemein, L. A. W., Schirrmeister, R. T., & Ball, T. (2022). Deep Riemannian Networks for EEG Decoding. arXiv preprint.

  • Demir, A., Khalil, I., & Kiziltan, B. (2022). EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive Activity from EEG. arXiv

  • Chevallier, S., Corsi, M. C., Yger, F., & Fallani, F. D. V. (2022). Riemannian geometry for combining functional connectivity metrics and covariance in BCI. Software Impacts, 12, 100254.

  • Corsi, M. C., Chevallier, S., Fallani, F. D. V., & Yger, F. (2022). Functional connectivity ensemble method to enhance BCI performance (FUCONE). IEEE Transactions on Biomedical Engineering.

  • D. Kostas-Heliokinde (2022) On the difficulty of training deep neural networks with raw encephalography data. PhD

  • X. Chen, X. Teng, H. Chen, Y. Pan, P. Geyer. (2022) Toward reliable signals decoding for electroencephalogram: A benchmark study to EEGNeX. arXiv

  • Barthélemy, Q., Chevallier, S., Bertrand-Lalo, R., & Clisson, P. (2022). End-to-end P300 BCI using Bayesian accumulation of Riemannian probabilities. Brain Computer Interface journal

  • Couvy-Duchesne, B., Bottani, S., Camenen, E., Fang, F., Fikere, M., Gonzalez-Astudillo, J., ... & Wright, M. (2022). Main existing datasets for open data research on humans. HAL

  • P. Guetschel, T. Papadopoulo, M. Tangermann. Embedding neurophysiological signals. Proc. of the IEEE MetroXRAINE conference, Oct 2022, Roma, Italy. HAL

  • J. Gonzalez-Astudillo. Development of Network Features for Brain-Computer Interfaces. PhD

  • Zoumpourlis, G., & Patras, I. (2022). Motor Imagery Decoding Using Ensemble Curriculum Learning and Collaborative Training. arXiv preprint arXiv:2211.11460.

2021

2020

2019

2018

Clone this wiki locally