Skip to content

NeuralBind/SingleCell_QC_Analysis_pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Single-Cell RNA-seq Analysis Pipeline

🧬 A comprehensive end-to-end pipeline for single-cell RNA sequencing data analysis, from quality control to cell-cell communication inference.

🔬 Overview

This repository provides a complete workflow for analyzing single-cell RNA-seq data using state-of-the-art computational methods. The pipeline integrates both R/Seurat and Python/scVI frameworks to deliver robust results from raw data to biological insights.

Key Features:

  • Quality control and doublet detection
  • Multiple normalization strategies (log1p, SCTransform)
  • Data integration using Seurat V5/Harmony and scVI
  • Automated and manual cell type annotation
  • Differential abundance testing with MILOR
  • Multiple cell-cell communication methods
  • Differential expression analysis
  • Comprehensive visualization tools

📁 Pipeline Structure

1. Quality Control & Preprocessing

  • 1.QC_DoubletF_Log1p.qmd - QC pipeline with doublet filtering and log1p normalization
  • 1.QC_DoubletF_SCT.qmd - Alternative QC using SCTransform normalization and doubletFinder
  • basic_analysis_steps_MISC.Rmd - Additional QC utilities and helper functions

2. Data Integration

  • 2.Data intergration.Rmd - Batch correction and sample integration (Seurat V5)
  • Single_cell_scVI.ipynb - Deep learning-based integration using scVI
  • Subclustering_SCVI.ipynb - Subclustering analysis with scVI
  • change_scvi_continuous.ipynb - Handling continuous covariates in scVI

3. Cell Type Annotation

  • 3.Annotation.Rmd - Automated and manual cell type annotation
  • High_annotation_multicontrast.Rmd - High-resolution annotation across conditions
  • High_level_multicontrast.Rmd - Broad cell type classification
  • Low_annotation_multiniche_multicontrast.Rmd - Fine-grained annotation analysis

4. Differential Abundance Analysis

  • 4. MILOR_dif_abud.Rmd - MILOR-based differential abundance testing

5. Subclustering & Advanced Analysis

  • 5.Subclustering.Rmd - Detailed subclustering of cell populations
  • Subclustering_SCVI.ipynb - Python-based subclustering with scVI

6. Cell-Cell Communication Analysis

  • 5.cc_interactions_niche.Rmd - Niche-based cell communication analysis
  • 5.cellchat.Rmd - CellChat communication inference
  • 6.cc_interactions_niche.Rmd - Extended niche interaction analysis
  • 6.cellchat.Rmd - Advanced CellChat workflows
  • 6.cellphonedb.Rmd - CellPhoneDB communication analysis
  • 6.Multinichenet.Rmd - MultiNicheNet analysis
  • 6.1.Multinichenet_output_analysis.Rmd - MultiNicheNet results interpretation

7. Differential Expression Analysis

  • 7.DEG_conditions_subtypes.Rmd - Differential gene expression across conditions and cell types

8. Metabolic Analysis

  • mebocost_rasV.ipynb - Metabolic cost analysis using MEBOCOST

9. Visualization & Utilities

  • tSNE.Rmd - t-SNE dimensionality reduction and plotting
  • UMAP_color_Change.Rmd - UMAP visualization customization
  • relative_percentages_plots.Rmd - Cell proportion visualization
  • object_format_convert.Rmd - Format conversion utilities

🚀 Quick Start

Prerequisites

# R packages (Seurat V5 required)
install.packages("Seurat") # Version 5.0+
install.packages(c("SingleCellExperiment", "scater"))
BiocManager::install(c("miloR", "CellChat", "MultiNicheNet"))

# Python packages
pip install scvi-tools scanpy pandas numpy matplotlib seaborn

Basic Usage

  1. Start with QC: Run 1.QC_DoubletF_Log1p.qmd or 1.QC_DoubletF_SCT.qmd
  2. Integrate data: Use 2.Data intergration.Rmd or Single_cell_scVI.ipynb
  3. Annotate cells: Apply 3.Annotation.Rmd
  4. Analyze communications: Choose from CellChat, CellPhoneDB, or MultiNicheNet scripts
  5. Find DEGs: Run 7.DEG_conditions_subtypes.Rmd

📊 Methods Implemented

Quality Control:

  • Doublet detection and filtering
  • Mitochondrial gene filtering
  • Low-quality cell removal

Normalization:

  • Log1p normalization
  • SCTransform
  • scVI normalization

Integration Methods:

  • Seurat V5 CCA/RPCA/Harmony
  • scVI deep learning integration

Cell-Cell Communication:

  • CellChat
  • CellPhoneDB
  • MultiNicheNet
  • Custom niche analysis
  • Mebocost

Differential Analysis:

  • MILOR (differential abundance)
  • Seurat V5 FindMarkers/FindAllMarkers
  • edgeR/DESeq2 integration

📈 Expected Outputs

  • Quality control reports and plots
  • Integrated single-cell object
  • Cell type annotations
  • UMAP/t-SNE visualizations
  • Cell-cell communication networks
  • Differential expression results
  • Abundance analysis results

🛠️ File Formats

  • Input: 10X Genomics H5/MTX, CSV, H5AD, RDS
  • Output: Seurat objects (RDS), AnnData (H5AD), CSV results, HTML reports

Note: This pipeline was developed for a private murine dataset. Adjust parameters as needed for your dataset.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published