Skip to content
This repository has been archived by the owner on Jan 3, 2023. It is now read-only.
This repository has been archived by the owner on Jan 3, 2023. It is now read-only.

Object identification based on images #458

Open
@sushanthkapisthalam

Description

Im working on a data set with object identification based on their images. I have 25 classes, since im very new to Neural networks and coding can some one suggest me what all pre-processing techniques can be done before sending the images in the convolution layer. I also want to implement SIFT features followed by TF-IDF retrieval.

This is what I have done so far:

from keras .models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD,RMSprop,adam
from keras.utils import np_utils

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import os
import theano
from PIL import Image
from numpy import *

SKLEARN

from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split

input image dimensions

img_rows, img_cols = 200, 200

number of channels

img_channels = 1

#Data
path1 = 'C:\Users\mails\Desktop\Frieburg\input_images'
path2 = 'C:\Users\mails\Desktop\Frieburg\images-resized'

listing = os.listdir(path1)
num_samples=size(listing)
print (num_samples)

for file in listing:
im = Image.open(path1 + '\' + file)
img = im.resize((img_rows,img_cols))
gray = img.convert('L')
#need to do some more processing here
gray.save(path2 +'\' + file, "PNG")

imlist = os.listdir(path2)

im1 = array(Image.open('C:\Users\mails\Desktop\Frieburg\images-resized' + '\'+ imlist[0])) # open one image to get size
m,n = im1.shape[0:2] # get the size of the images
imnbr = len(imlist) # get the number of images

create matrix to store all flattened images

immatrix = array([array(Image.open('C:\Users\mails\Desktop\Frieburg\images-resized'+ '\' + im2)).flatten()
for im2 in imlist],'f')

label=np.ones((num_samples,),dtype = int)
label[0:136]=0
label[136:297]=1
label[297:669]=2
label[669:947]=3
label[947:1128]=4
label[1128:1435]=5
label[1435:1733]=6
label[1733:1830]=7
label[1830:1940]=8
label[1940:2049]=9
label[2049:2234]=10
label[2234:2475]=11
label[2475:2777]=12
label[2777:2939]=13
label[2939:3107]=14
label[3107:3250]=15
label[3250:3422]=16
label[3422:3572]=17
label[3572:3749]=18
label[3749:3956]=19
label[3956:4074]=20
label[4074:4357]=21
label[4357:4528]=222
label[4528:4685]=23
label[4685:]=24

data,Label = shuffle(immatrix,label, random_state=2)
train_data = [data,Label]

img=immatrix[217].reshape(img_rows,img_cols)
plt.imshow(img)
plt.imshow(img,cmap='gray')
print (train_data[0].shape)
print (train_data[1].shape)

#batch_size to train
batch_size = 128

number of output classes

nb_classes = 25

number of epochs to train

nb_epoch = 20

number of convolutional filters to use

nb_filters = 32

size of pooling area for max pooling

nb_pool = 2

convolution kernel size

nb_conv = 3

(X, y) = (train_data[0],train_data[1])

STEP 1: split X and y into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=4)

X_train = X_train.reshape(X_train.shape[0], 1, img_cols, img_rows)
X_test = X_test.reshape(X_test.shape[0], 1, img_cols, img_rows)

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')

X_train /= 255
X_test /= 255

print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')


convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

i = 100
plt.imshow(X_train[i, 0], interpolation='nearest')
print("label : ", Y_train[i,:])

(When Im trying to do cross entropy I get this error)

IndexError: index 222 is out of bounds for axis 1 with size 25

Can some one suggest me what should be done before sending the images to convolution layer.

Thanks in advance!

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions