forked from Tapanhaz/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Project Euler Problem 180 (TheAlgorithms#4017)
* Added solution for Project Euler problem 180 * Fixed minor details in Project Euler problem 180 * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
- Loading branch information
Showing
3 changed files
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
""" | ||
Project Euler Problem 234: https://projecteuler.net/problem=234 | ||
For any integer n, consider the three functions | ||
f1,n(x,y,z) = x^(n+1) + y^(n+1) - z^(n+1) | ||
f2,n(x,y,z) = (xy + yz + zx)*(x^(n-1) + y^(n-1) - z^(n-1)) | ||
f3,n(x,y,z) = xyz*(xn-2 + yn-2 - zn-2) | ||
and their combination | ||
fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) - f3,n(x,y,z) | ||
We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers | ||
of the form a / b with 0 < a < b ≤ k and there is (at least) one integer n, | ||
so that fn(x,y,z) = 0. | ||
Let s(x,y,z) = x + y + z. | ||
Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples | ||
(x,y,z) of order 35. | ||
All the s(x,y,z) and t must be in reduced form. | ||
Find u + v. | ||
Solution: | ||
By expanding the brackets it is easy to show that | ||
fn(x, y, z) = (x + y + z) * (x^n + y^n - z^n). | ||
Since x,y,z are positive, the requirement fn(x, y, z) = 0 is fulfilled if and | ||
only if x^n + y^n = z^n. | ||
By Fermat's Last Theorem, this means that the absolute value of n can not | ||
exceed 2, i.e. n is in {-2, -1, 0, 1, 2}. We can eliminate n = 0 since then the | ||
equation would reduce to 1 + 1 = 1, for which there are no solutions. | ||
So all we have to do is iterate through the possible numerators and denominators | ||
of x and y, calculate the corresponding z, and check if the corresponding numerator and | ||
denominator are integer and satisfy 0 < z_num < z_den <= 0. We use a set "uniquq_s" | ||
to make sure there are no duplicates, and the fractions.Fraction class to make sure | ||
we get the right numerator and denominator. | ||
Reference: | ||
https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem | ||
""" | ||
|
||
|
||
from fractions import Fraction | ||
from math import gcd, sqrt | ||
from typing import Tuple | ||
|
||
|
||
def is_sq(number: int) -> bool: | ||
""" | ||
Check if number is a perfect square. | ||
>>> is_sq(1) | ||
True | ||
>>> is_sq(1000001) | ||
False | ||
>>> is_sq(1000000) | ||
True | ||
""" | ||
sq: int = int(number ** 0.5) | ||
return number == sq * sq | ||
|
||
|
||
def add_three( | ||
x_num: int, x_den: int, y_num: int, y_den: int, z_num: int, z_den: int | ||
) -> Tuple[int, int]: | ||
""" | ||
Given the numerators and denominators of three fractions, return the | ||
numerator and denominator of their sum in lowest form. | ||
>>> add_three(1, 3, 1, 3, 1, 3) | ||
(1, 1) | ||
>>> add_three(2, 5, 4, 11, 12, 3) | ||
(262, 55) | ||
""" | ||
top: int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den | ||
bottom: int = x_den * y_den * z_den | ||
hcf: int = gcd(top, bottom) | ||
top //= hcf | ||
bottom //= hcf | ||
return top, bottom | ||
|
||
|
||
def solution(order: int = 35) -> int: | ||
""" | ||
Find the sum of the numerator and denominator of the sum of all s(x,y,z) for | ||
golden triples (x,y,z) of the given order. | ||
>>> solution(5) | ||
296 | ||
>>> solution(10) | ||
12519 | ||
>>> solution(20) | ||
19408891927 | ||
""" | ||
unique_s: set = set() | ||
hcf: int | ||
total: Fraction = Fraction(0) | ||
fraction_sum: Tuple[int, int] | ||
|
||
for x_num in range(1, order + 1): | ||
for x_den in range(x_num + 1, order + 1): | ||
for y_num in range(1, order + 1): | ||
for y_den in range(y_num + 1, order + 1): | ||
# n=1 | ||
z_num = x_num * y_den + x_den * y_num | ||
z_den = x_den * y_den | ||
hcf = gcd(z_num, z_den) | ||
z_num //= hcf | ||
z_den //= hcf | ||
if 0 < z_num < z_den <= order: | ||
fraction_sum = add_three( | ||
x_num, x_den, y_num, y_den, z_num, z_den | ||
) | ||
unique_s.add(fraction_sum) | ||
|
||
# n=2 | ||
z_num = ( | ||
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num | ||
) | ||
z_den = x_den * x_den * y_den * y_den | ||
if is_sq(z_num) and is_sq(z_den): | ||
z_num = int(sqrt(z_num)) | ||
z_den = int(sqrt(z_den)) | ||
hcf = gcd(z_num, z_den) | ||
z_num //= hcf | ||
z_den //= hcf | ||
if 0 < z_num < z_den <= order: | ||
fraction_sum = add_three( | ||
x_num, x_den, y_num, y_den, z_num, z_den | ||
) | ||
unique_s.add(fraction_sum) | ||
|
||
# n=-1 | ||
z_num = x_num * y_num | ||
z_den = x_den * y_num + x_num * y_den | ||
hcf = gcd(z_num, z_den) | ||
z_num //= hcf | ||
z_den //= hcf | ||
if 0 < z_num < z_den <= order: | ||
fraction_sum = add_three( | ||
x_num, x_den, y_num, y_den, z_num, z_den | ||
) | ||
unique_s.add(fraction_sum) | ||
|
||
# n=2 | ||
z_num = x_num * x_num * y_num * y_num | ||
z_den = ( | ||
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den | ||
) | ||
if is_sq(z_num) and is_sq(z_den): | ||
z_num = int(sqrt(z_num)) | ||
z_den = int(sqrt(z_den)) | ||
hcf = gcd(z_num, z_den) | ||
z_num //= hcf | ||
z_den //= hcf | ||
if 0 < z_num < z_den <= order: | ||
fraction_sum = add_three( | ||
x_num, x_den, y_num, y_den, z_num, z_den | ||
) | ||
unique_s.add(fraction_sum) | ||
|
||
for num, den in unique_s: | ||
total += Fraction(num, den) | ||
|
||
return total.denominator + total.numerator | ||
|
||
|
||
if __name__ == "__main__": | ||
print(f"{solution() = }") |