I programmed a Python project to demonstrate the use of the Pandas Python library (Series, DataFrames, Overloaded, Higher-Order functions), and Numpy to analyze existing medical data!
- Creating Serie/Data Frame objects
- Using High-Order and Built-In Pandas functions:
- s.max(), s.std(), s.count(), and many more
- s.map()
- df.apply()
- lambda functions
- dataframe filtrations
- Series and DataFrame conversions
- Using Overloaded functions and boolean operators
- Series and DataFrame Data Structure Slicing/Selection
- Delimiter: separator of content while parsing a file --> regex
- Headers: data file --> row numbers
- Name: array --> data file --> column names
- Row Number Count: number of lines to read in the data file
- Accessing, Altering, Manipulating, Filtering, and Searching Serie/Data Frame contents
- Using filtration techniques to find patients according to search queries
- Standardizes the entire data collection use of data statistical values