A complete Analytics Engineering project that uses cleaned stock data to create a 3-page Power BI dashboard with dbt models and PostgreSQL integration. Built to demonstrate data wrangling, modeling, and visualization skills in a realistic scenario.
| Tool | Purpose |
|---|---|
| Power BI | Data modeling and visualization |
| dbt Core | Data transformation and aggregation |
| PostgreSQL | Data storage |
| Python | CSV ingestion and preprocessing |
| Git + GitHub | Version control and sharing |
stock-insights-dashboard/
├── data/ # Raw + cleaned CSV files
├── dbt_project/ # dbt models, sources, schema
│ ├── models/
│ └── dbt_project.yml
├── scripts/ # Python ingestion + cleaning
├── dashboard/ # .pbix file of Power BI dashboard
├── .gitignore
├── README.md
└── requirements.txt
- 🔹 Average Volume by Sector (Pie Chart)
- 🔹 Average Close by Sector (Column Chart)
- 🔹 Sector Slicer
- 🔹 Line Chart: Close over Time by Sector
- 🔹 Bar Chart: Sector vs Total Volume
- 🔹 Column Chart: Sector vs Avg Close
- 🔹 Sector Slicer
- 🔹 Slicer: Ticker
- 🔹 Card KPIs: Avg Volume, Avg Close
- 🔹 Line Chart: Close Price Over Time
- 🔹 Table: Full Record View by Company
- 🟡 Source: Kaggle June 2025 Stock Dataset
- ⚙️ Cleaned using Python → Loaded into PostgreSQL
- 🔁 Modeled in dbt using
stock_summary,sector_aggregates, etc. - 📈 Visualized with Power BI
- Automate data ingestion using APIs or schedulers
- Extend dashboard with financial ratios
- Try hosting Streamlit version