-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
298 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
--- | ||
created: 2024-11-26T14:33:42 | ||
up: "[[📖NI-MPI]]" | ||
--- | ||
|
||
TARGET DECK: NI-MPI | ||
FILE TAGS: NI-MPI cviceni10 status-toReview | ||
|
||
### Cvičení 17.2 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(Q \setminus \set{0} , \cdot \right) \\ | ||
& N = \set{2k, k \in \mathbb{Z} , k \neq 0} \\ | ||
& \text{\small{1)}} \\ | ||
& N \subset M \\ | ||
& \text{\small Je grupa?} (N,\cdot ) \\ | ||
& 1 \notin N \Rightarrow \text{\small{Nejedná se o podgrupu}} \\ | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 17.2b | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& N = \set{2k+1, k \in \mathbb{Z}} \\ | ||
& \text{\small{1) }} N \subset M \\ | ||
& \text{\small{2) }} (N,\cdot ) \\ | ||
& \text{\small{Chybí in verze vzhledem k násobení, není podgrupa}} | ||
\end{align*} | ||
$$ | ||
|
||
|
||
### Cvičení 17.2c | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& N = \set{2^k, n \in \mathbb{Z}} \\ | ||
& \text{\small{1) }} N \subset M \\ | ||
& \text{\small{2) }} (N, \cdot ) \\ | ||
& \text{\small{a) }} a,b \in N, a \cdot b = 2^{m} \cdot 2^{m} = 2^{m+n} \in N \\ | ||
& \text{\small{b) asoc.}} \\ | ||
& \text{\small{c) }} 1 = 2^{0} \in N \\ | ||
& \text{\small{d) }} a=2^{m} \quad q^{-1} = 2^{-m} \in N \\ | ||
& a^{-1} \cdot a = 2^{-m} \cdot 2^{m} =2^{0} =1=e \\ | ||
& \text{\small{e) komutativní}} \\ | ||
& \Rightarrow (N,\cdot ) \text{\small{ je podgrupou}} | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 17.2d | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& N=\set{2^{n}\cdot 3^{m} ; n,m \in \mathbb{Z} } \\ | ||
& \text{\small{1) }} N \subset M \\ | ||
& \text{\small{2) }} \\ | ||
& \text{\small{a) }} \\ | ||
& a = 2^{n}3^{m} \\ | ||
& b = 2^{k} 3^{l} \\ | ||
& a \circ b = 2^{n}3^{m}2^{k} 3^{l}=2^{n+k}3^{m+l} \in N \\ | ||
& \text{\small{b) asociativnost platí}} \\ | ||
& \text{\small{c) }} 1 = 2^{0}3^{0} \in N \\ | ||
& \text{\small{d) }} a^{-1}=2^{-n}3^{-m} \\ | ||
& \Rightarrow (N, \cdot ) \text{\small{ je podgrupou}} | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 17.2e | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& N = \set{\tfrac{1+2n}{1+2m} : n,m \in \mathbb{Z} } \\ | ||
& \text{\small{1) }} N \subset M \\ | ||
& \text{\small{2) }} \\ | ||
& \dots \\ | ||
& \Rightarrow \text{\small{Je podgrupa}} | ||
\end{align*} | ||
$$ | ||
### Cvičení 17.3 | ||
|
||
| | a | b | c | d | | ||
| --- | --- | --- | --- | --- | | ||
| a | a | b | c | d | | ||
| b | b | a | d | c | | ||
| c | c | d | a | b | | ||
| d | d | c | b | a | | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \\ | ||
& \text{Triviální podgrupy} \\ | ||
& \text{\small{řád 4: }} \set{a,b,c,d} \checkmark \\ | ||
& \text{\small{řád 1: }} \set{a} \checkmark \\ | ||
& \\ | ||
& \text{Další podgrupy} \\ | ||
& \text{\small{řád 2: }} \set{a, ?} \\ | ||
& \set{a,b} \checkmark \\ | ||
& \set{a,c} \checkmark \\ | ||
& \set{a,d} \checkmark \\ | ||
& \text{\small{řád 3: }} \set{a, ?, ?} \\ | ||
& \text{\small{Žádnou podgrupu nenajdem}} \\ | ||
\end{align*} | ||
$$ | ||
### Cvičení 17.4 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& G = \set{a+b\sqrt{2} ; a,b \in \mathbb{Q} , q \neq 0 \lor b \neq 0} \\ | ||
& \text{\small{Je }} (G,\cdot ) \text{\small{ podgrupou }} (R \setminus \set{0} ; \cdot ) \text{\small{ ?}} \\ | ||
& \text{\small{1) }} N \subset M \\ | ||
& \text{\small{2) Vlastnosti grupy:}} \\ | ||
& \text{\small{a) uzavřenost}} \\ | ||
& m = a+b\sqrt{2} \\ | ||
& n=c+d\sqrt{2} \\ | ||
& m\cdot n = (a+b\sqrt{2})(c+d\sqrt{2}) = \\ | ||
& = (ac+2bd)+(bc+ad)\sqrt{2} \in \mathbb{Q} \\ | ||
& \text{\small{Pozor, musíme ověřit abych nedostal }} 0 \\ | ||
& \text{\small{Víme z definice G že to jsou nenulová čísla a násobením nenulových reálných čísel nemohu dostat nulu}} \\ | ||
& \text{\small{b) asociativita }} \checkmark \\ | ||
& \text{\small{c) neutrální prvek }} \\ | ||
& 1=1+0\sqrt{2} \\ | ||
& \text{\small{d) inverze}} \\ | ||
& m^{-1} = \tfrac{1}{a+b\sqrt{2} } \cdot \tfrac{a-b\sqrt{2} }{a-b\sqrt{2}} = \tfrac{a}{a^2 -2b^2 } -\tfrac{b}{a^2 -2b^2 } \sqrt{2} \in \mathbb{G} \\ | ||
& \Rightarrow (G, \cdot ) \text{\small{ je podgrupou }} (R \setminus \set{0} ; \cdot ) | ||
& \text{\small{e) uzavřenost}} \\ | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 17.5 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& (M, \circ ) \\ | ||
& G = \set{q \in M : a \text{\small{ je invertibilní}} } \\ | ||
& \text{\small{Je }} (G, \circ ) \text{\small{ grupa?}} \\ | ||
& a \in G \land b \in G \xrightarrow{?} a \circ b \in G \\ | ||
& \\ | ||
& \text{\small{kandidát }} b^{-1} \circ a^{-1} \\ | ||
& (b^{-1} \circ a^{-1})\circ (a \circ b) = \\ | ||
& = b^{-1} \circ (a^{-1}\circ a ) \circ b = \\ | ||
& =b^{-1} \circ e \circ b= b^{-1} \circ b \circ e \\ | ||
& (a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ a^{-1} =e \\ | ||
& \text{\small{oba prvky }} (a \circ b), (b^{-1} \circ a^{-1}) \text{\small{ leží v G }} \\ | ||
& \\ | ||
& \text{Ověření vlastností grupy} \\ | ||
& \text{\small{a) uzavřenost }} \checkmark \\ | ||
& \text{\small{b) asociativita }} \checkmark \\ | ||
& \text{\small{a) neutrální prvek }} \checkmark \\ | ||
& \text{\small{a) inverzní prvek }} \checkmark \\ | ||
& \Rightarrow (G,\circ ) \text{\small{ je grupa.}} \\ | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 18.1 | ||
 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \mathbb{Z}_{15}^{+} = (M,+_{15}) \\ | ||
& M = \set{0,1,2,\dots 14} \\ | ||
& \text{Generátory:} \\ | ||
& g=1 \checkmark \#<g> =\# \mathbb{Z}_{15}^{+} = 15 \\ | ||
& g = 14 \checkmark \\ | ||
& \text{\small{Dle Lagrangeovy věty řád podgrupy musí být dělitel řádu celé grupy. }} \\ | ||
& \text{\small{Mohou existovat jen podgrupy řádů:}} \\ | ||
& 1,3,5,15 \\ | ||
& \text{\small{řád 3: }} \set{0,5,10} \\ | ||
& \text{\small{řád 5: }} \set{0,3,6,9,12} \\ | ||
& \text{\small{Generátory jsou:}} \\ | ||
& 1,2,4,7,8,11,13,14 \\ \\ | ||
& \text{\small{Ověření kolik jich má být:}} \\ | ||
& \varphi(15) = \varphi(5) \varphi(3) = (5^1 -5^{0})(3^{1}-3^{0})=4\cdot 2=8 \\ | ||
& \\ | ||
& \text{Inverzní prvky:} \\ | ||
& a^{-1}=15-a\\ | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 18.2 | ||
 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \text{\small{řády }} 3, 5, 7 \\ | ||
& 3\cdot 5\cdot 7 = 105 \\ | ||
& \mathbb{Z}_{105}^{+} \\ | ||
& \text{\small{podgrupa řádu 3: }} \set{0,35,70} \\ | ||
& \text{\small{podgrupa řádu 5: }} \set{0,21,42,63,84} \\ | ||
& \text{\small{podgrupa řádu 7: }} \set{0,15,30,45,60,75,90} \\ | ||
\end{align*} | ||
$$ | ||
### Cvičení 18.3a | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(\mathbb{Z,+} \right) \quad \text{\small{množina }} \set{2} \\ | ||
& \\ | ||
& \text{Řešení} \\ | ||
& (M, +) \quad M=\set{2k, k \in \mathbb{Z}} | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 18.3b | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(\mathbb{Z,+} \right) \quad \text{\small{množina }} \set{2,3} \\ | ||
& \\ | ||
& \text{Řešení} \\ | ||
& 2^{-1} \circ 3^{1} =1 \quad \text{\small{je generátor }} \left(\mathbb{Z,+} \right)\\ | ||
& M = \mathbb{Z} | ||
\end{align*} | ||
$$ | ||
|
||
### Cvičení 18.3c | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(\mathbb{Z,+} \right) \quad \text{\small{množina }} \set{2,5} \\ | ||
& \\ | ||
& \text{Řešení} \\ | ||
& 2^{-2} \circ 5^{1} =1 \quad \text{\small{je generátor }} \left(\mathbb{Z,+} \right)\\ | ||
& M = \mathbb{Z} | ||
\end{align*} | ||
$$ | ||
### Cvičení 18.3d | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(\mathbb{Z,+} \right) \quad \text{\small{množina }} \set{6,15} \\ | ||
& \\ | ||
& \text{Řešení} \\ | ||
& \text{\small{nevyrobím }} 1 \text{\small{ ani }} -1 \\ | ||
& 6^{-2} \circ 15^{1} =3=\gcd{(6,15)} \\ | ||
& M = \set{3k, k \in \mathbb{Z}} | ||
\end{align*} | ||
$$ | ||
### Cvičení 18.3e | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(\mathbb{Z,+} \right) \quad \text{\small{množina }} \set{n,m}, n \neq m \\ | ||
& \\ | ||
& \text{Řešení} \\ | ||
& N=\set{a \cdot k, k \in \mathbb{Z}, a = \gcd{(n,m)}} \\ | ||
\end{align*} | ||
$$ | ||
### Cvičení 18.4 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \left(\mathbb{Z},+ \right) \\ | ||
& N = \set{a\cdot k, a \in \mathbb{Z}, k \in \mathbb{Z}} \quad \text{\small{Řešení}} \\ | ||
& | ||
\end{align*} | ||
$$ | ||
### Cvičení 18.5 | ||
 | ||
 | ||
<!-- Latex Equation --> | ||
$$ | ||
\begin{align*} | ||
& \mathbb{Z}_{11}^{\times} = (M, \times_{11} ) \\ | ||
& M = \set{1,2, 3,4,5,6,7,8,9,10} \\ | ||
& \# \mathbb{Z}_{11}^{\times}=10 \\ | ||
& \\ | ||
& \text{Generátory} \\ | ||
& \text{\small{2 je generátor:}} \\ | ||
& 2^2 = 4 \\ | ||
& 2^3 = \\ | ||
& \dots \\ | ||
& \begin{rcases} 2^2 = 4 \\2^{5} = 2^{2} \cdot 2^{2} \cdot 2 = 4\cdot 4\cdot 2=10 \\ \end{rcases} \text{\small{ 2 je generátor}} \\ | ||
& \dots \\ | ||
& 2^{10} = 1 \\ | ||
& \text{\small{možné řády podgrup: }} 2, 5 \\ | ||
& \text{\small{Chceme selektivně vybrat ty mocniny}} \\ | ||
& \text{\small{Hledáme čísla nesoudělná s 10: }} \\ | ||
& 1,3,7,9 \\ | ||
& \text{\small{Generátory:}} \\ | ||
& 2^{1} = 2 \\ | ||
& 2^{3} = 8 \\ | ||
& 2^{7} = 7 \\ | ||
& 2^{9} = 6 \\ | ||
& \\ | ||
& \text{Inverzní prvky:} \\ | ||
& 1 \rightarrow 1 \\ | ||
& 2 \rightarrow 6 \\ | ||
& 3 \rightarrow 4 \\ | ||
& 4 \rightarrow 3 \\ | ||
& 5 \rightarrow 9 \\ | ||
& 6 \rightarrow 2 \\ | ||
& 7 \rightarrow 8 \\ | ||
& 8 \rightarrow 7 \\ | ||
& 9 \rightarrow 5 \\ | ||
& 10 \rightarrow 10 \\ | ||
\end{align*} | ||
$$ |