Skip to content
/ codon Public
forked from exaloop/codon

A high-performance, zero-overhead, extensible Python compiler using LLVM

License

Notifications You must be signed in to change notification settings

Mookel/codon

 
 

Repository files navigation

Codon

Docs  |  FAQ  |  Blog  |  Forum  |  Chat  |  Benchmarks

Build Status

What is Codon?

Codon is a high-performance Python compiler that compiles Python code to native machine code without any runtime overhead. Typical speedups over Python are on the order of 10-100x or more, on a single thread. Codon's performance is typically on par with (and sometimes better than) that of C/C++. Unlike Python, Codon supports native multithreading, which can lead to speedups many times higher still. Codon grew out of the Seq project.

Install

Pre-built binaries for Linux (x86_64) and macOS (x86_64 and arm64) are available alongside each release. Download and install with:

/bin/bash -c "$(curl -fsSL https://exaloop.io/install.sh)"

Or you can build from source.

Examples

Codon is a Python-compatible language, and many Python programs will work with few if any modifications:

def fib(n):
    a, b = 0, 1
    while a < n:
        print(a, end=' ')
        a, b = b, a+b
    print()
fib(1000)

The codon compiler has a number of options and modes:

# compile and run the program
codon run fib.py
# 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

# compile and run the program with optimizations enabled
codon run -release fib.py
# 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

# compile to executable with optimizations enabled
codon build -release -exe fib.py
./fib
# 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

# compile to LLVM IR file with optimizations enabled
codon build -release -llvm fib.py
# outputs file fib.ll

See the docs for more options and examples.

This prime counting example showcases Codon's OpenMP support, enabled with the addition of one line. The @par annotation tells the compiler to parallelize the following for-loop, in this case using a dynamic schedule, chunk size of 100, and 16 threads.

from sys import argv

def is_prime(n):
    factors = 0
    for i in range(2, n):
        if n % i == 0:
            factors += 1
    return factors == 0

limit = int(argv[1])
total = 0

@par(schedule='dynamic', chunk_size=100, num_threads=16)
for i in range(2, limit):
    if is_prime(i):
        total += 1

print(total)

Codon supports writing and executing GPU kernels. Here's an example that computes the Mandelbrot set:

import gpu

MAX    = 1000  # maximum Mandelbrot iterations
N      = 4096  # width and height of image
pixels = [0 for _ in range(N * N)]

def scale(x, a, b):
    return a + (x/N)*(b - a)

@gpu.kernel
def mandelbrot(pixels):
    idx = (gpu.block.x * gpu.block.dim.x) + gpu.thread.x
    i, j = divmod(idx, N)
    c = complex(scale(j, -2.00, 0.47), scale(i, -1.12, 1.12))
    z = 0j
    iteration = 0

    while abs(z) <= 2 and iteration < MAX:
        z = z**2 + c
        iteration += 1

    pixels[idx] = int(255 * iteration/MAX)

mandelbrot(pixels, grid=(N*N)//1024, block=1024)

GPU programming can also be done using the @par syntax with @par(gpu=True).

What isn't Codon?

While Codon supports nearly all of Python's syntax, it is not a drop-in replacement, and large codebases might require modifications to be run through the Codon compiler. For example, some of Python's modules are not yet implemented within Codon, and a few of Python's dynamic features are disallowed. The Codon compiler produces detailed error messages to help identify and resolve any incompatibilities.

Codon can be used within larger Python codebases via the @codon.jit decorator. Plain Python functions and libraries can also be called from within Codon via Python interoperability.

Documentation

Please see docs.exaloop.io for in-depth documentation.

About

A high-performance, zero-overhead, extensible Python compiler using LLVM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 55.4%
  • Python 43.2%
  • Other 1.4%