Skip to content

MingLongSu/YOLOv1-Implementation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

🤖 YOLOv1 Paper Implementation

This is repository contains the implementation and training scripts on GPU for the YOLOv1 object detection model according to the details in the paper using the PyTorch framework.

🧰 Dependencies

- python=3.10.13
- matplotlib=3.8.0
- numpy=1.26.3
- pandas=2.1.4
- pytorch=2.2.0
- pytorch-cuda=12.1
- tensorboard=2.10.0
- torchaudio==2.2.0
- torchvision==0.17.0

🛠️ Demos

image image

🏎️ Training

To run the training script, (use paths or) go to directory with run_training.py. Then run script with the following:

python run_training.py 
--batch_size=4 
--epochs=135 
--save_epoch_freq=10 
--start_epoch=0 
--metaset_path=path/to/train/meta_data
--imgs_path=path/to/images_dir
--lbls_path=path/to/labels_dir
--output_dir=path/to/checkpoints_dir
--log_dir=path/to/tensorboards_output_dir

👷 Testing

To run the testing scripts, (use paths or) go to tests directory. Then run any of the training scripts with the following:

python my_test_file.py 

❤️ Special Thanks

Much love to Aladdin Persson for his YouTube series on computer vision principles such as non-maximum suppression and explaining the YOLOv1 paper itself which helped with this implementation!

About

(Unofficial) YOLOv1 Implementation using PyTorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages