Skip to content

MeirKaD/FactFlux

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FactFlux

Python Version License Last Commit Issues Stars Forks

An intelligent multi-agent system for fact-checking social media posts using Agno framework and Bright Data tools.

🚀 Features

  • Multi-Platform Support: TikTok, Instagram, Twitter/X, Facebook, YouTube, LinkedIn
  • Intelligent Tool Selection: Automatically chooses optimal scraping methods
  • Comprehensive Analysis: Content extraction, claim identification, cross-referencing, verdict synthesis
  • Authoritative Sources: Verifies against news sites, fact-checkers, official sources
  • Confidence Scoring: Evidence-based verdicts with transparency

Demo

FactFlux Demo Video

Click to watch FactFlux in action

📋 Prerequisites

  • Python 3.8+
  • Valid API keys for:
    • Google's Gemini
    • Bright Data

🛠️ Installation

  1. Clone the repository

    git clone https://github.com/MeirKaD/FactFlux.git
    cd FactFlux
  2. Create virtual environment

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt
  4. Configure environment variables

    cp .env.example .env
    # Edit .env with your API keys

🔧 Configuration

Create a .env file with your API keys:

GOOGLE_API_KEY=your_google_gemini_api_key_here
BRIGHT_DATA_API_KEY=your_bright_data_api_key_here

🎯 Usage

Playground Mode (Recommended)

python playground_fact_check.py

Access the playground through the following URL :

https://app.agno.com/playground/teams?endpoint=localhost%253A7777

🏗️ Architecture

Agent Team Structure

  1. Content Extractor Agent

    • Extracts post data using optimal Bright Data tools
    • Handles multiple platforms automatically
  2. Claim Identifier Agent

    • Identifies verifiable factual claims
    • Separates facts from opinions/satire
  3. Cross-Reference Agent

    • Verifies claims against authoritative sources
    • Performs reverse media searches
  4. Verdict Agent

    • Synthesizes evidence and delivers final verdict
    • Provides confidence scores and reasoning

Workflow Process

URL Input → Content Extraction → Claim Identification → Cross-Reference → Final Verdict

🛡️ Supported Platforms

  • ✅ TikTok
  • ✅ Instagram
  • ✅ Twitter/X
  • ✅ Facebook
  • ✅ YouTube
  • ✅ LinkedIn

🚨 Error Handling

The system includes comprehensive error handling for:

  • Invalid URLs
  • Network failures
  • API rate limits
  • Malformed social media posts
  • Missing content

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

  • Check the logs for detailed error information
  • Ensure all API keys are valid and have sufficient credits
  • Verify the social media URL is publicly accessible
  • Review the supported platforms list

🔄 Updates

  • Check for Agno framework updates: pip install -U agno
  • Monitor Bright Data API changes
  • Keep model versions updated in configuration

Note: This system is designed for educational and research purposes. Always respect platform terms of service and rate limits.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages