Skip to content

feat(openllama): support openllama-3B #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 44 additions & 0 deletions application/openllama/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
## OpenLLaMA-3B

OpenLLaMA 项目地址:https://github.com/openlm-research/open_llama

### 下载 OpenLLaMA-3B 模型
从 [huggingface](https://huggingface.co/openlm-research/open_llama_3b_600bt_preview/tree/main) 上下载模型,该模型为 fp16 的 pytorch 格式权重

### 量化为 INT4 模型
量化工具是 cpp 编写的,主要源文件是 quantizer.cpp 文件,运行这个文件之前需要编译固定版本的 llama.cpp。
```bash
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
git reset --hard b608b55
git apply openllama.patch
mkdir build
cd build
cmake ..
make -j
cd ..
python convert.py ${PATH_TO_HUGGINGFACE_OPENLLAMA}/pytorch_model.bin
./build/bin/quantize ${PATH_TO_HUGGINGFACE_OPENLLAMA}/ggml-model-f16.bin ggml-model-q4_0.bin q4_0
```

- 克隆仓库后,需要将 commit 回退到 b608b55,因为 InferLLM 最高只支持 ggjt.v1 格式的模型,而 llama.cpp 目前 (commit: 7552ac586380f202b75b18aa216ecfefbd438d94) 已更新到 ggjt.v3 且不向前兼容
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

模型格式是可以自定义的,ChatGLM 中就是自定义的模型格式,自定义的模型格式需要在graph中加对应的解析方法就可以

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

get

- 回退代码后,需要打上补丁,OpenLLaMa 的 3B 模型的细节配置与 7B 存在不一致,从 pytorch 格式(pytorch_model.bin)转换到 ggjt 格式(ggml-model-f16.bin)时需要特殊处理
- 编译完成之后在 build 目录下面有一个 bin/quantize 的可执行文件,通过这个工具可以将上一步中的 ggml-model-f16.bin 模型量化为 INT4 的模型(ggml-model-q4_0.bin)

### 运行 OpenLLaMA-3B 模型

可以参考本项目 alpaca 的 README, 编译获得 alpaca 可执行文件。
```bash
git clone https://github.com/MegEngine/InferLLM.git
mkdir build
cd build
cmake ..
make -j
```

通过 alpaca 可执行文件可以运行量化好的 OpenLLaMA 模型

```bash
./alpaca -m ggml-model-q4_0.bin -t 4
```

142 changes: 142 additions & 0 deletions application/openllama/openllama.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
diff --git a/convert.py b/convert.py
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

可以直接在 InferLLM 中添加一个convert.py 以及量化的cpp吗?这样就不依赖于llama.cpp这个工程了

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok,本来的确是这么想的,但是需要一些工作量,所以偷懒用现在这种方式了

index 8f4f039..ab5047b 100644
--- a/convert.py
+++ b/convert.py
@@ -144,12 +144,22 @@ class Params:
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params':
n_vocab, n_embd = model["tok_embeddings.weight"].shape

+ n_mult = 256
+ n_head = n_embd // 128
+ n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
+
+ # TODO: hack for open_llama_3b
+ if n_embd == 3200:
+ n_mult = 216
+ n_head = 32
+ n_layer = 26
+
return Params(
n_vocab=n_vocab,
n_embd=n_embd,
- n_mult=256,
- n_head=n_embd // 128,
- n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model),
+ n_mult=n_mult,
+ n_head=n_head,
+ n_layer=n_layer,
file_type=file_type,
)

@@ -598,7 +608,9 @@ def convert_transformers_to_orig(model: LazyModel) -> LazyModel:
out["norm.weight"] = model["model.norm.weight"]
out["output.weight"] = model["lm_head.weight"]

- n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128
+ # TODO: hack for open_llama_3b
+ n_embd = model["model.layers.0.self_attn.q_proj.weight"].shape[1]
+ n_head = 32 if n_embd == 3200 else n_embd // 128
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
break
diff --git a/ggml.c b/ggml.c
index 4e309df..43947cf 100644
--- a/ggml.c
+++ b/ggml.c
@@ -187,6 +187,13 @@ typedef double ggml_float;
#include <intrin.h>
#else
#include <immintrin.h>
+#if (defined(__GNUC__) && __GNUC__ >= 8) || defined(__INTEL_COMPILER)
+#define MM256_SET_M128I(a, b) _mm256_set_m128i((a), (b))
+#define MM256_SET_M128(a, b) _mm256_set_m128((a), (b))
+#else
+#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
+#define MM256_SET_M128(a, b) _mm256_insertf128_ps(_mm256_castps128_ps256(b), (a), 1)
+#endif
#endif
#endif
#endif
@@ -2985,7 +2992,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
}

// Convert int32_t to float
- __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
+ __m256 p = _mm256_cvtepi32_ps( MM256_SET_M128I( i32[0], i32[1] ));
// Apply the scale, and accumulate
acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
}
@@ -3250,11 +3257,11 @@ static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void *
/* Compute combined scale for the block */
const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
- const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
+ const __m256 d = _mm256_mul_ps(MM256_SET_M128(d1, d0), _mm256_broadcast_ss(&y[i].d));

__m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
__m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
- __m256i bx = _mm256_set_m128i(bx1, bx0);
+ __m256i bx = MM256_SET_M128I(bx1, bx0);

// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
const __m256i off = _mm256_set1_epi8(8);
diff --git a/llama.cpp b/llama.cpp
index 4bba93a..c3ed784 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -36,6 +36,7 @@
// available llama models
enum e_model {
MODEL_UNKNOWN,
+ MODEL_3B,
MODEL_7B,
MODEL_13B,
MODEL_30B,
@@ -51,6 +52,7 @@ static const size_t MB = 1024*1024;
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
{
static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
+ { MODEL_3B, 128ull * MB },
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
@@ -62,6 +64,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{
static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
+ { MODEL_3B, 128ull * MB },
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
@@ -74,6 +77,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
{
static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
+ { MODEL_3B, 682ull * MB },
{ MODEL_7B, 1026ull * MB },
{ MODEL_13B, 1608ull * MB },
{ MODEL_30B, 3124ull * MB },
@@ -87,6 +91,7 @@ static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{
static std::map<e_model, size_t> _MEM_REQ_EVAL = {
+ { MODEL_3B, 512ull * MB },
{ MODEL_7B, 768ull * MB },
{ MODEL_13B, 1024ull * MB },
{ MODEL_30B, 1280ull * MB },
@@ -862,6 +867,7 @@ static const char *llama_ftype_name(enum llama_ftype ftype) {

static const char *llama_model_type_name(e_model type) {
switch (type) {
+ case MODEL_3B: return "3B";
case MODEL_7B: return "7B";
case MODEL_13B: return "13B";
case MODEL_30B: return "30B";
@@ -894,6 +900,7 @@ static void llama_model_load_internal(

{
switch (hparams.n_layer) {
+ case 26: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
case 60: model.type = e_model::MODEL_30B; break;