Skip to content

Python project analyzing retail sales, generating insights, visualizing trends, and exporting a professional Excel report for data-driven decision making.

Notifications You must be signed in to change notification settings

MatthewLawrencel/Retail-Sales-Analyzer-Python-Data-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Retail Sales Data Analysis

A comprehensive data engineering project analyzing retail sales data using Python, Pandas, and data visualization techniques.

Project Overview

  • This project demonstrates how to:

  • Extract data from retail sales CSV files

  • Transform and clean sales data

  • Analyze sales performance and trends

  • Generate visual reports and Excel exports

Tech Stack

  • Python

  • pandas - Data analysis

  • matplotlib - Data visualization

  • xlsxwriter - Excel reports

Process

1️⃣ Extract

  Reads sales data from retail_sales.csv file

2️⃣ Transform

   Cleans and processes the data:

   -  Handles missing values

   -  Converts data types

   -  Validates data quality

3️⃣ Analyze

   Performs sales analysis:

   - Product performance ranking

   - Sales trend analysis

   - Daily sales metrics

4️⃣ Report

   - Generates Excel reports and visual charts

   - Run the Pipeline
bash
Install dependencies
  • pip install pandas matplotlib xlsxwriter openpyxl
Run the analysis
  • python retail_sale_analyzer.py
Example Output
  • Retail Sale Analyzer Starting...
Cleaned data:
  • Removed 0 rows with missing values.
Total Sales per Product:
  • Product A 495
  • Product B 565
  • Product C 635
Best Selling Product:
  • Product C
Average Daily Sales:
  • 56.5
Excel report generated successfully:
  • sales_report.xlsx

  • Analysis complete!

Analysis Summary:
  • Total sales entries: 30
Product Performance:
  • Product A: 495

  • Product B: 565

  • Product C: 635

Best Seller:
  • Product C

  • Average Daily Sales: 56.5

Create retail_sales.csv with these columns:
  • Date (YYYY-MM-DD)

  • Product (text)

  • Sales (numeric)

Example:
  • csv
  • Date,Product,Sales
  • 2025-01-01,Product A,50
  • 2025-01-01,Product B,60
  • 2025-01-01,Product C,70
  • 2025-01-02,Product A,45
  • 2025-01-02,Product B,55
  • 2025-01-02,Product C,65
  • 2025-01-03,Product A,35
  • 2025-01-03,Product B,25
  • 2025-01-03,Product C,15
  • 2025-01-04,Product A,60
  • 2025-01-04,Product B,70
  • 2025-01-04,Product C,80
  • 2025-01-05,Product A,40
  • 2025-01-05,Product B,45
  • 2025-01-05,Product C,55
  • 2025-01-06,Product A,55
  • 2025-01-06,Product B,65
  • 2025-01-06,Product C,75
  • 2025-01-07,Product A,30
  • 2025-01-07,Product B,35
  • 2025-01-07,Product C,40
  • 2025-01-08,Product A,65
  • 2025-01-08,Product B,75
  • 2025-01-08,Product C,85
  • 2025-01-09,Product A,45
  • 2025-01-09,Product B,50
  • 2025-01-09,Product C,60
  • 2025-01-10,Product A,70
  • 2025-01-10,Product B,80
  • 2025-01-10,Product C,90

Retail Sales Data Analysis

A comprehensive data engineering project analyzing retail sales data using Python, Pandas, and data visualization techniques.

Chart View

Alt text

Alt text

Matthew Lawrence L

Bengaluru, Karnataka

About

Python project analyzing retail sales, generating insights, visualizing trends, and exporting a professional Excel report for data-driven decision making.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages