A comprehensive data engineering project analyzing retail sales data using Python, Pandas, and data visualization techniques.
-
This project demonstrates how to:
-
Extract data from retail sales CSV files
-
Transform and clean sales data
-
Analyze sales performance and trends
-
Generate visual reports and Excel exports
-
Python
-
pandas - Data analysis
-
matplotlib - Data visualization
-
xlsxwriter - Excel reports
Reads sales data from retail_sales.csv file
Cleans and processes the data:
- Handles missing values
- Converts data types
- Validates data quality
Performs sales analysis:
- Product performance ranking
- Sales trend analysis
- Daily sales metrics
- Generates Excel reports and visual charts
- Run the Pipeline
- pip install pandas matplotlib xlsxwriter openpyxl
- python retail_sale_analyzer.py
- Retail Sale Analyzer Starting...
- Removed 0 rows with missing values.
- Product A 495
- Product B 565
- Product C 635
- Product C
- 56.5
-
sales_report.xlsx
-
Analysis complete!
- Total sales entries: 30
-
Product A: 495
-
Product B: 565
-
Product C: 635
-
Product C
-
Average Daily Sales: 56.5
-
Date (YYYY-MM-DD)
-
Product (text)
-
Sales (numeric)
- csv
- Date,Product,Sales
- 2025-01-01,Product A,50
- 2025-01-01,Product B,60
- 2025-01-01,Product C,70
- 2025-01-02,Product A,45
- 2025-01-02,Product B,55
- 2025-01-02,Product C,65
- 2025-01-03,Product A,35
- 2025-01-03,Product B,25
- 2025-01-03,Product C,15
- 2025-01-04,Product A,60
- 2025-01-04,Product B,70
- 2025-01-04,Product C,80
- 2025-01-05,Product A,40
- 2025-01-05,Product B,45
- 2025-01-05,Product C,55
- 2025-01-06,Product A,55
- 2025-01-06,Product B,65
- 2025-01-06,Product C,75
- 2025-01-07,Product A,30
- 2025-01-07,Product B,35
- 2025-01-07,Product C,40
- 2025-01-08,Product A,65
- 2025-01-08,Product B,75
- 2025-01-08,Product C,85
- 2025-01-09,Product A,45
- 2025-01-09,Product B,50
- 2025-01-09,Product C,60
- 2025-01-10,Product A,70
- 2025-01-10,Product B,80
- 2025-01-10,Product C,90
A comprehensive data engineering project analyzing retail sales data using Python, Pandas, and data visualization techniques.

