Skip to content
View MarioPasc's full-sized avatar
🎯
Focusing
🎯
Focusing

Block or report MarioPasc

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
MarioPasc/README.md

Mario Pascual González

Bioinformatics BSc · Researcher in Computer Vision, Biomedical Imaging

About me

  • 📚 Bioinformatics undergraduate @ UMA, Spain & Research Assistant (Computational Intelligence and Image Analysis lab)
  • 🖥️ Focus: Deep Learning Computer Vision applied to Medical Imaging. I work with Angiography Imaging and Multimodal (Neuro) MRI.
  • 🛠️ Core stack: Python | PyTorch | SKImage | Scikit-Learn
  • 🎓 Goal: PhD in Neurocomputation, Biomedical Imaging-related
  • 📖 Other Interests: Mathematics, Probabilistic Machine Learning, Single-Cell Genomics, Fluorescence Imaging, ESP32

Main Projects

Repo Summary Tech Stars
Hyperparameter Optimization in YOLO Unifying framework for High-Performance Bayesian and Evolutionary hyperparameter optimization in YOLO-based models for stenosis detection. Optuna, PyTorch stars
FISRG FCD Segmentation Fuzzy Information Seeded Region Growing for Automated Lesions After Stroke Segmentation in T1 MR Brain Images. OpenCV, Numpy stars
MGA-YOLO Mask-Guided attention for Stenosis Detection in YOLO models. PyTorch stars
Dyslexia EEG Characterisation Time-Series EEG Recurrence-quantification analysis for detecting underlying neural adaptation processes in dyslexia. Scikit-Learn, PyUNICORN stars
Additional applied & educational work
  • Malign tumour prediction from BCW dataset · classical ML → repo
  • A* heuristic maze solver → repo
  • Histogram-based segmentation utilities → repo
  • TC Image Segmentation Analysis with Region Growing and Split & Merge Techniques → repo
  • Segmentation of focal cortical dysplasia (FCD) type II lesions using YOLOv8 and PyTorch → repo

Publications

  • M. Pascual-González, A. Jiménez-Partinen, E. J. Palomo, E. López-Rubio, and A. Ortega-Gómez, "Hyperparameter optimization of YOLO models for invasive coronary angiography lesion detection and assessment," Computers in Biology and Medicine, vol. 196, p. 110697, 2025, doi: 10.1016/j.compbiomed.2025.110697. , paper. [code]
  • M. Pascual-González, E. López-Rubio, F.Sendra-Portero, & A. Pérez-Lara (2025). Optimizando el preprocesamiento de la imagen por resonancia magnética: estimación ciega de ruido con campos aleatorios gaussianos. En F. Sendra Portero, D. Domínguez Pinos, T. Rudolphi Solero, L. de la Peña Fernández, & M. J. Ruiz Gómez (Eds.), III Congreso Nacional de Estudiantes de Radiología y Medicina Física (pp. 5–6). Asociación de Profesores Universitarios de Radiología y Medicina Física (APURF). ISBN 978-1-300-31039-6. Universidad de Málaga. paper
  • M. Pascual-González, “Fuzzy Information Seeded Region Growing for Automated Lesions After Stroke Segmentation in MR Brain Images”, paper. [code]
Show BibTeX
@article{PASCUALGONZALEZ2025110697,
title = {Hyperparameter optimization of YOLO models for invasive coronary angiography lesion detection and assessment},
journal = {Computers in Biology and Medicine},
volume = {196},
pages = {110697},
year = {2025},
issn = {0010-4825},
doi = {https://doi.org/10.1016/j.compbiomed.2025.110697},
url = {https://www.sciencedirect.com/science/article/pii/S0010482525010480},
author = {Mario Pascual-González and Ariadna Jiménez-Partinen and Esteban J. Palomo and Ezequiel López-Rubio and Almudena Ortega-Gómez}
@inproceedings{PascualGonzalez2025,
  author    = {Mario Pascual González and Ezequiel López Rubio and Francisco Sendra Portero and Almudena Pérez Lara},
  title     = {Optimizando el Preprocesamiento de la Imagen por Resonancia Magnética: Estimación Ciega de Ruido con Campos Aleatorios Gaussianos},
  booktitle = {III Congreso Nacional de Estudiantes de Radiología y Medicina Física},
  editor    = {Francisco Sendra Portero and Dolores Domínguez Pinos and Teodoro Rudolphi Solero and Lourdes de la Peña Fernández and Miguel José Ruiz Gómez},
  year      = {2025},
  pages     = {5--6},
  publisher = {Asociación de Profesores Universitarios de Radiología y Medicina Física (APURF)},
  address   = {Málaga, España},
  isbn      = {978-1-300-31039-6},
  organization = {Universidad de Málaga}
}
@article{gonzalez2023fuzzy,
  title={Fuzzy Information Seeded Region Growing for Automated Lesions After Stroke Segmentation in MR Brain Images},
  author={Gonz{\'a}lez, Mario Pascual},
  journal={arXiv preprint arXiv:2311.11742},
  year={2023}
}

Pinned Loading

  1. BCW-Dataset-Tumor-Prediction-using-Machine-Learning BCW-Dataset-Tumor-Prediction-using-Machine-Learning Public

    A comprehensive analysis of the Wisconsin Breast Cancer Dataset using scikit-learn. This repository includes code for preprocessing (PCA, normalization), and machine learning model implementation (…

    Jupyter Notebook 2

  2. bioinformatics-algorithms bioinformatics-algorithms Public

    C++ implementation of several algorithms used in bioinformatics. Might use other languages.

    C++ 2

  3. N-Body-Simulation-Python N-Body-Simulation-Python Public

    N-Body simulation using Python.

    Python 2

  4. Dyslexia_EEG_characterization Dyslexia_EEG_characterization Public

    Python

  5. FISRG-for-Automated-Lesion-After-Stroke-Segmentation-in-MRI FISRG-for-Automated-Lesion-After-Stroke-Segmentation-in-MRI Public

    FISRG-based algorithm for precise segmentation of stroke lesions in brain MRI images, demonstrating enhanced accuracy and computational efficiency. This project features optimized techniques for de…

    Jupyter Notebook 16 1

  6. Region-Growing-Split-and-Merge-algorithms-in-Python Region-Growing-Split-and-Merge-algorithms-in-Python Public

    This repository contains all the code I've written for the fourth assignment of the course 'Biomedical Images'

    Jupyter Notebook 3