Skip to content

MarinePICOT/MEAD

 
 

Repository files navigation

MEAD: Multi-Armed Approach for Evaluation of Adversarial Examples Detectors

MEAD is a framework for evaluating detectors based on several attack strategies.

Current package structure

The files with the adversarial samples and the features have been created by executing this code.

Package
MEAD/
├── adv_data
│   ├── cifar10
│   └── mnist
├── checkpoints
│   ├── rn-best.pt
│   └── small_cnn-best.pt
├── features
│   ├── fs
│   │   ├── cifar10
│   │   │   └── evaluation
│   │   └── mnist
│   │       └── evaluation
│   ├── kd_bu
│   │   ├── cifar10
│   │   │   └── evaluation
│   │   └── mnist
│   │       └── evaluation
│   ├── lid
│   │   ├── cifar10
│   │   │   └── evaluation
│   │   └── mnist
│   │       └── evaluation
│   ├── magnet
│   │   ├── cifar10
│   │   │   └── evaluation
│   │   └── mnist
│   │       └── evaluation
│   └── nss
│       ├── cifar10
│       │   └── evaluation
│       └── mnist
│           └── evaluation
├── __init__.py
├── mead_evaluation.py
├── mead.yml
├── models
│   ├── __init__.py
│   ├── resnet.py
│   └── small_cnn.py
├── README.md
├── results
├── setup_paths.py
└── utils
    ├── general_utils.py
    ├── __init__.py
    └── plot_utils.py

Usage

To execute MEAD:

  • Create the enviroment for MEAD:
foo@bar:~$ conda create --name mead python=3.8
  • Activate the enviroment for MEAD:
foo@bar:~$ source activate mead
  • Install all the required packages:
(mead) foo@bar:~$ pip3 install -r requirements.txt
  • Launch the test from CLI for CIFAR10:

-d: dataset between cifar10 and mnist
-m: detector to evaluate between fs, kd_bu, lid, magnet and nss
-p: plot name to save the ROC
-dev: device between cuda and cpu

(mead) foo@bar:~$ python mead_evaluation.py -d cifar10 -m kd_bu -p cifar10_kd_bu -dev cuda 

Enviroment

We run each experiment on a machine equipped with an Intel(R) Xeon(R) CPU E5-2623 v4, 2.60GHz clock frequency, and a GeForce GTX 1080 Ti GPU.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%