- BitVector
- Data structure with 3.61% overhead supporting rank and select for 1 bits. Select support for 0 bits require additional 0.39%, currently not implemented
- Supports:
rank(i): number of set bits (1s) up to positioni.select(k): position of thek-th set bit.
- Implementation mainly follows [1] with SIMD optimizations similar to [2]
- AVX-512 support is mandatory for now and thus will not compile without it.
- C++20
- Compiler with AVX-512 support recommended for best performance.
- CMake ≥ 3.15.
git clone https://github.com/Malkovsky/pixie.git
cd pixie
mkdir build && cd build
cmake ..
make -jThis will build the library along with benchmarks and tests.
After building:
./unittests./test_rmmBenchmarks are random 50/50 0-1 bitvectors up to
./benchmarks./bench_rmmFor visualization, write the JSON output to a file using --benchmark_out=<file> (e.g. ./bench_rmm --benchmark_out=rmm_bench.json) and plot it with misc/plot_rmm.py.
#include "bitvector.h"
#include <vector>
#include <iostream>
using namespace pixie;
int main() {
std::vector<uint64_t> bits = {0b101101}; // 6 bits
BitVector bv(bits, 6);
std::cout << "bv: " << bv.to_string() << "\n"; // "101101"
std::cout << "rank(4): " << bv.rank(4) << "\n"; // number of ones in first 4 bits
std::cout << "select(2): " << bv.select(2) << "\n"; // position of 2nd one-bit
}#include "rmm_tree.h"
#include <string>
#include <iostream>
using namespace pixie;
int main() {
// root
// ├─ A
// │ ├─ a1
// │ └─ a2
// ├─ B
// └─ C
// └─ c1
std::string bits = "11101001011000";
RmMTree t(bits);
std::cout << "close(1): " << t.close(1) << "\n"; // expected 6 (A)
std::cout << "open(3): " << t.open(3) << "\n"; // expected 2 (a1)
std::cout << "enclose(1): " << t.enclose(1) << "\n"; // expected 0 (root)
}[1] Laws et al., SPIDER: Improved Succinct Rank and Select Performance SPIDER [2] Kurpicz, Engineering compact data structures for rank and select queries on bit vectors pasta-toolbox/bit_vector