Skip to content

Commit

Permalink
【paddle.fleet】parameter_server_optimizer support auto_strategy (Paddl…
Browse files Browse the repository at this point in the history
…ePaddle#26838)

* test=develop, add ps auto
  • Loading branch information
123malin authored Sep 8, 2020
1 parent 4c70e31 commit f2d68d3
Show file tree
Hide file tree
Showing 5 changed files with 318 additions and 9 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@

from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase
from paddle.fluid import core
import subprocess
import re
import platform


class ParameterServerOptimizer(MetaOptimizerBase):
Expand All @@ -28,6 +32,9 @@ def _is_graph_out(self):
def _can_apply(self):
if self.role_maker._is_collective:
return False
if self.user_defined_strategy.auto == True:
return True

k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
return True if k_steps >= 0 else False

Expand Down Expand Up @@ -127,22 +134,125 @@ def _build_pserver_programs(self, compiled_config):

return _main, _startup

def _try_auto_apply_geo(self, program, compiled_config):
def get_sys_free_mem():
plat = platform.system()
if platform.system() == "Darwin":
vm = subprocess.Popen(
['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
# Process vm_stat
vmLines = vm.split('\n')
sep = re.compile(':[\s]+')
vmStats = {}
for row in range(1, len(vmLines) - 2):
rowText = vmLines[row].strip()
rowElements = sep.split(rowText)
vmStats[(rowElements[0]
)] = int(rowElements[1].strip('\.')) * 4096
return vmStats["Pages free"]
elif platform.system() == "Linux":
mems = {}
with open('/proc/meminfo', 'rb') as f:
for line in f:
fields = line.split()
mems[fields[0]] = int(fields[1]) * 1024
free = mems[b'MemFree:']
return free
else:
raise ValueError(
"%s platform is unsupported is parameter server optimizer" %
(platform.system()))

if self.user_defined_strategy.auto == False:
return

a_sync_configs = self.user_defined_strategy.a_sync_configs
if a_sync_configs["k_steps"] >= 0:
return

self.user_defined_strategy.a_sync = True
if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
# auto async
a_sync_configs["k_steps"] = 0
self.user_defined_strategy.a_sync_configs = a_sync_configs
return

from paddle.fluid.incubate.fleet.parameter_server.ir.vars_metatools import dtype_to_size
free = get_sys_free_mem()

param_grad_pairs = compiled_config.origin_sparse_pairs + compiled_config.origin_dense_pairs
processed_var_names = set(["@EMPTY@"])

param_memory_size = 0
for param_grad_pair in param_grad_pairs:
param, grad = param_grad_pair
param_memory_size += param.m_size
processed_var_names.add(param.name)

upper_mem_use = param_memory_size * 5.0

program_tmp_vars = dict()
batch_size = 1024
for op in program.global_block().ops:
for var_name in op.output_arg_names:
if var_name in processed_var_names:
continue
processed_var_names.add(var_name)
var = program.global_block().vars[var_name]

if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
continue

data_count = 1
neg_dim_count = 0
for x in var.shape:
if x < 0:
if neg_dim_count >= 1:
raise ValueError(
"Var %s has more than one negative dim." %
(var_name))
neg_dim_count += 1
data_count *= (-x)
else:
data_count *= x
program_tmp_vars[var_name] = (data_count, neg_dim_count,
dtype_to_size[var.dtype])

for varname in program_tmp_vars:
data_count, neg_dim_count, type_size = program_tmp_vars[varname]
if neg_dim_count == 1:
data_count *= batch_size
var_memory = data_count * type_size
upper_mem_use += var_memory

if upper_mem_use < free:
# auto geo
a_sync_configs["k_steps"] = 800
else:
# auto async
a_sync_configs["k_steps"] = 0
self.user_defined_strategy.a_sync_configs = a_sync_configs

def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
self.inner_opt.minimize(loss, startup_program, parameter_list,
no_grad_set)
strategy = self._get_distributed_strategy()

_origin_main_program = loss.block.program
_origin_startup_program = startup_program
from paddle.fluid.incubate.fleet.parameter_server.ir import public as public

compiled_config = public.CompileTimeStrategy(_origin_main_program,
_origin_startup_program,
strategy, self.role_maker)
None, self.role_maker)

self._try_auto_apply_geo(_origin_main_program, compiled_config)

strategy = self._get_distributed_strategy()
compiled_config.strategy = strategy

if self.role_maker.is_worker() or self.role_maker._is_heter_worker():
main_program, startup_program = self._build_trainer_programs(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from functools import reduce

from paddle.fluid.framework import Variable
from paddle.fluid import core

dtype_to_size = {
core.VarDesc.VarType.FP16: 2,
core.VarDesc.VarType.FP32: 4,
core.VarDesc.VarType.FP64: 8,
core.VarDesc.VarType.INT16: 2,
core.VarDesc.VarType.INT32: 4,
core.VarDesc.VarType.INT64: 8,
core.VarDesc.VarType.BOOL: 1,
core.VarDesc.VarType.UINT8: 1,
}


class VarBlock:
def __init__(self, varname, offset, size):
Expand Down Expand Up @@ -51,11 +64,14 @@ def __init__(self, name, shape, dtype, type, lod_level, persistable):
self.type = type
self.lod_level = lod_level
self.persistable = persistable
self.m_size = 1
self.m_size = reduce(lambda x, y: x * y, shape)
self.m_size *= dtype_to_size[dtype]

def __str__(self):
return "N: {}, S: {}, D: {}, T: {}, LL: {}, P: {}".format(
return "N: {}, S: {}, D: {}, T: {}, LL: {}, P: {}, M: {}".format(
self.name, self.shape, self.dtype, self.type, self.lod_level,
self.persistable)
self.persistable, self.m_size)


class VarDistributed(object):
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import os
import paddle.distributed.fleet.base.role_maker as role_maker
import time


class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
def setUp(self):
os.environ["PADDLE_PSERVER_NUMS"] = "2"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
"127.0.0.1:36001,127.0.0.2:36001"

def test_a_sync_optimizer1(self):
os.environ["TRAINING_ROLE"] = "TRAINER"
import paddle.distributed.fleet as fleet

main_program = paddle.fluid.Program()
startup_program = paddle.fluid.Program()

paddle.fluid.framework.switch_main_program(main_program)
paddle.fluid.framework.switch_startup_program(startup_program)

fleet.init(role_maker.PaddleCloudRoleMaker())
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)

strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.auto = True
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

self.assertTrue(optimizer.user_defined_strategy.a_sync)
a_sync_configs = optimizer.user_defined_strategy.a_sync_configs
self.assertTrue(a_sync_configs['k_steps'] == 0)

def test_a_sync_optimizer2(self):
os.environ["TRAINING_ROLE"] = "TRAINER"
import paddle.distributed.fleet as fleet

main_program = paddle.fluid.Program()
startup_program = paddle.fluid.Program()

paddle.fluid.framework.switch_main_program(main_program)
paddle.fluid.framework.switch_startup_program(startup_program)

fleet.init(role_maker.PaddleCloudRoleMaker())
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)

strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.auto = True
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

self.assertTrue(optimizer.user_defined_strategy.a_sync)
a_sync_configs = optimizer.user_defined_strategy.a_sync_configs
self.assertTrue(a_sync_configs['k_steps'] == 800)

def test_a_sync_optimizer3(self):
os.environ["TRAINING_ROLE"] = "TRAINER"
import paddle.distributed.fleet as fleet

main_program = paddle.fluid.Program()
startup_program = paddle.fluid.Program()

paddle.fluid.framework.switch_main_program(main_program)
paddle.fluid.framework.switch_startup_program(startup_program)

fleet.init(role_maker.PaddleCloudRoleMaker())
input_x = paddle.fluid.layers.data(
name="x",
shape=[-1, 1],
dtype="int64",
lod_level=1,
append_batch_size=False)
x_embedding = paddle.fluid.layers.embedding(
is_distributed=False,
input=input_x,
size=[1000000000, 100000],
param_attr=paddle.fluid.ParamAttr(
name="embedding",
initializer=paddle.fluid.initializer.Constant(value=0.01)),
is_sparse=True)
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

fc_1 = paddle.fluid.layers.fc(input=x_embedding, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)

strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.auto = True
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

self.assertTrue(optimizer.user_defined_strategy.a_sync)
a_sync_configs = optimizer.user_defined_strategy.a_sync_configs
self.assertTrue(a_sync_configs['k_steps'] == 0)


if __name__ == "__main__":
unittest.main()
18 changes: 13 additions & 5 deletions python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,9 +76,10 @@ def build_role(self, args):
return role

def build_strategy(self, args):
self.strategy = paddle.distributed.fleet.DistributedStrategy()
self.strategy.a_sync = False
if args.mode == "async":
if args.mode == "sync":
self.strategy = paddle.distributed.fleet.DistributedStrategy()
self.strategy.a_sync = False
elif args.mode == "async":
self.strategy = paddle.distributed.fleet.DistributedStrategy()
self.strategy.a_sync = True
elif args.mode == "geo":
Expand All @@ -87,6 +88,10 @@ def build_strategy(self, args):
self.strategy.a_sync_configs = {
"k_steps": args.geo_sgd_need_push_nums
}
elif args.mode == "auto":
self.strategy = paddle.distributed.fleet.DistributedStrategy()
self.strategy.auto = True

self.dump_param = os.getenv("dump_param", "").split(",")
self.dump_fields = os.getenv("dump_fields", "").split(",")
self.dump_fields_path = os.getenv("dump_fields_path", "")
Expand Down Expand Up @@ -232,14 +237,17 @@ def _start_trainer(self, cmd, required_envs):
tr0_pipe = open(tempfile.gettempdir() + "/tr0_err.log", "wb+")
tr1_pipe = open(tempfile.gettempdir() + "/tr1_err.log", "wb+")

tr0_out = open(tempfile.gettempdir() + "/tr0_stdout.log", "wb+")
tr1_out = open(tempfile.gettempdir() + "/tr1_stdout.log", "wb+")

tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stdout=tr0_out,
stderr=tr0_pipe,
env=required_envs)
tr1_proc = subprocess.Popen(
tr1_cmd.strip().split(" "),
stdout=subprocess.PIPE,
stdout=tr1_out,
stderr=tr1_pipe,
env=required_envs)

Expand Down
Loading

0 comments on commit f2d68d3

Please sign in to comment.