Skip to content

Lyt060814/LangChain_Tutorials

Repository files navigation

LangChain Tutorials

A collection of Jupyter notebooks demonstrating various LangChain functionalities and use cases.

Contents

Basic Tutorials

  • translation.ipynb - Translation app using LangChain
  • classification.ipynb - Text classification and labeling

Chatbots

  • chatbot.ipynb - Basic chatbot with LangGraph
  • chatbot_v2.ipynb - Enhanced chatbot version
  • chatbot_v3.ipynb - Latest chatbot implementation

RAG Applications

  • rag_v1.ipynb - Retrieval Augmented Generation app
  • rag_v2.ipynb - Improved RAG implementation

Agents

  • basic_agent.ipynb - Simple agent with tools

Advanced Features

  • langgraph_quick_start.ipynb - LangGraph framework basics
  • extraction_chain.ipynb - Data extraction with tool calling
  • sematic_search_engine.ipynb - Semantic search implementation

Setup

  1. Install dependencies:
pip install langchain langchain-core langchain-community
pip install langchain-openai langchain-deepseek
pip install langgraph langchain-text-splitters
pip install python-dotenv beautifulsoup4 langchain-tavily
  1. Create a .env file with your API keys:
OPENAI_API_KEY=your_key
DEEPSEEK_API_KEY=your_key
OPENROUTER_API_KEY=your_key
LANGSMITH_API_KEY=your_key
TAVILY_API_KEY=your_key

Requirements

  • Python 3.8+
  • Jupyter Notebook
  • API keys for various services (OpenAI, DeepSeek, etc.)

About

Langchain Tutorials

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published