forked from triton-lang/triton
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PIPELINER] tweak pipeline heuristic (triton-lang#5247)
Don't pipeline the dot accumulator in the default heuristic. In the finer grain control will allow user to decide.
- Loading branch information
1 parent
e3ab295
commit 4107453
Showing
2 changed files
with
66 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
// RUN: triton-opt %s -split-input-file -tritongpu-loop-scheduling=num-stages=3 | FileCheck %s | ||
|
||
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}> | ||
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}> | ||
#C = #triton_gpu.nvidia_mma<{versionMajor = 2, warpsPerCTA = [4, 1]}> | ||
#ALs0 = #triton_gpu.slice<{parent=#AL, dim=0}> | ||
#BLs0 = #triton_gpu.slice<{parent=#BL, dim=0}> | ||
#CLs0 = #triton_gpu.slice<{parent=#C, dim=0}> | ||
#A = #triton_gpu.dot_op<{opIdx = 0, parent = #C, kWidth=2}> | ||
#B = #triton_gpu.dot_op<{opIdx = 1, parent = #C, kWidth=2}> | ||
module attributes {"triton_gpu.num-warps" = 4 : i32, "triton_gpu.num-ctas" = 1 : i32} { | ||
// CHECK-LABLE: @matmul_loop_load_acc | ||
// CHECK: tt.load %{{.*}} {loop.cluster = 3 : i32, loop.stage = 0 : i32} | ||
// CHECK: tt.load %{{.*}} {loop.cluster = 3 : i32, loop.stage = 0 : i32} | ||
// CHECK: tt.load %{{.*}} {loop.cluster = 1 : i32, loop.stage = 2 : i32} | ||
// CHECK: tt.dot {{.*}} {loop.cluster = 1 : i32, loop.stage = 2 : i32} | ||
tt.func @matmul_loop_load_acc(%lb : index, %ub : index, %step : index, | ||
%A : !tt.ptr<f16> {tt.divisibility = 16 : i32}, | ||
%B : !tt.ptr<f16> {tt.divisibility = 16 : i32}, | ||
%C : !tt.ptr<f32> {tt.divisibility = 16 : i32}, | ||
%c_init: tensor<128x128xf32, #C>) -> tensor<128x128xf32, #C> { | ||
|
||
// A ptrs | ||
%a_ptr_splat = tt.splat %A : !tt.ptr<f16> -> tensor<128x32x!tt.ptr<f16>, #AL> | ||
%a_tmp0 = tt.make_range {end = 32: i32, start = 0: i32} : tensor<32xi32, #ALs0> | ||
%a_tmp1 = tt.expand_dims %a_tmp0 {axis = 0 : i32} : tensor<32xi32, #ALs0> -> tensor<1x32xi32, #AL> | ||
%a_offs = tt.broadcast %a_tmp1 : tensor<1x32xi32, #AL> -> tensor<128x32xi32, #AL> | ||
%a_ptr_init = tt.addptr %a_ptr_splat, %a_offs : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<128x32xi32, #AL> | ||
// B ptrs | ||
%b_ptr_splat = tt.splat %B : !tt.ptr<f16> -> tensor<32x128x!tt.ptr<f16>, #BL> | ||
%b_tmp0 = tt.make_range {end = 128: i32, start = 0: i32} : tensor<128xi32, #BLs0> | ||
%b_tmp1 = tt.expand_dims %b_tmp0 {axis = 0 : i32} : tensor<128xi32, #BLs0> -> tensor<1x128xi32, #BL> | ||
%b_offs = tt.broadcast %b_tmp1 : tensor<1x128xi32, #BL> -> tensor<32x128xi32, #BL> | ||
%b_ptr_init = tt.addptr %b_ptr_splat, %b_offs : tensor<32x128x!tt.ptr<f16>, #BL>, tensor<32x128xi32, #BL> | ||
// C ptrs | ||
%c_ptr_splat = tt.splat %C : !tt.ptr<f32> -> tensor<128x128x!tt.ptr<f32>, #C> | ||
%c_tmp0 = tt.make_range {end = 128: i32, start = 0: i32} : tensor<128xi32, #CLs0> | ||
%c_tmp1 = tt.expand_dims %c_tmp0 {axis = 0 : i32} : tensor<128xi32, #CLs0> -> tensor<1x128xi32, #C> | ||
%c_offs = tt.broadcast %c_tmp1 : tensor<1x128xi32, #C> -> tensor<128x128xi32, #C> | ||
%c_ptr_init = tt.addptr %c_ptr_splat, %c_offs : tensor<128x128x!tt.ptr<f32>, #C>, tensor<128x128xi32, #C> | ||
|
||
%a_off = arith.constant dense<4> : tensor<128x32xi32, #AL> | ||
%b_off = arith.constant dense<4> : tensor<32x128xi32, #BL> | ||
%c_off = arith.constant dense<4> : tensor<128x128xi32, #C> | ||
|
||
%loop:4 = scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %c_ptr = %c_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128x!tt.ptr<f32>, #C>, tensor<128x128xf32, #C>) { | ||
%a_ = tt.load %a_ptr : tensor<128x32x!tt.ptr<f16>, #AL> | ||
%a = triton_gpu.convert_layout %a_ : tensor<128x32xf16, #AL> -> tensor<128x32xf16, #A> | ||
%b_ = tt.load %b_ptr : tensor<32x128x!tt.ptr<f16>, #BL> | ||
%b = triton_gpu.convert_layout %b_ : tensor<32x128xf16, #BL> -> tensor<32x128xf16, #B> | ||
%c_ = tt.load %c_ptr : tensor<128x128x!tt.ptr<f32>, #C> | ||
%c = tt.dot %a, %b, %prev_c : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> | ||
|
||
%next_a_ptr = tt.addptr %a_ptr, %a_off : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<128x32xi32, #AL> | ||
%next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr<f16>, #BL>, tensor<32x128xi32, #BL> | ||
%next_c_ptr = tt.addptr %c_ptr, %c_off : tensor<128x128x!tt.ptr<f32>, #C>, tensor<128x128xi32, #C> | ||
scf.yield %next_a_ptr, %next_b_ptr, %next_c_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128x!tt.ptr<f32>, #C>, tensor<128x128xf32, #C> | ||
} | ||
tt.return %loop#3: tensor<128x128xf32, #C> | ||
} | ||
} |