Skip to content

Commit

Permalink
feature : add blis and other BLAS implementation support (ggerganov#1502
Browse files Browse the repository at this point in the history
)

* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
  • Loading branch information
zenixls2 and ggerganov authored May 20, 2023
1 parent ec2e10c commit 07e9ace
Show file tree
Hide file tree
Showing 4 changed files with 104 additions and 25 deletions.
67 changes: 67 additions & 0 deletions BLIS.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
BLIS Installation Manual
------------------------

BLIS is a portable software framework for high-performance BLAS-like dense linear algebra libraries. It has received awards and recognition, including the 2023 James H. Wilkinson Prize for Numerical Software and the 2020 SIAM Activity Group on Supercomputing Best Paper Prize. BLIS provides a new BLAS-like API and a compatibility layer for traditional BLAS routine calls. It offers features such as object-based API, typed API, BLAS and CBLAS compatibility layers.

Project URL: https://github.com/flame/blis

### Prepare:

Compile BLIS:

```bash
git clone https://github.com/flame/blis
cd blis
./configure --enable-cblas -t openmp,pthreads auto
# will install to /usr/local/ by default.
make -j
```

Install BLIS:

```bash
sudo make install
```

We recommend using openmp since it's easier to modify the cores been used.

### llama.cpp compilation

Makefile:

```bash
make LLAMA_BLIS=1 -j
# make LLAMA_BLIS=1 benchmark-matmult
```

CMake:

```bash
mkdir build
cd build
cmake -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=FLAME ..
make -j
```

### llama.cpp execution

According to the BLIS documentation, we could set the following
environment variables to modify the behavior of openmp:

```
export GOMP_GPU_AFFINITY="0-19"
export BLIS_NUM_THREADS=14
```

And then run the binaries as normal.


### Intel specific issue

Some might get the error message saying that `libimf.so` cannot be found.
Please follow this [stackoverflow page](https://stackoverflow.com/questions/70687930/intel-oneapi-2022-libimf-so-no-such-file-or-directory-during-openmpi-compila).

### Reference:

1. https://github.com/flame/blis#getting-started
2. https://github.com/flame/blis/blob/master/docs/Multithreading.md
39 changes: 16 additions & 23 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,8 @@ endif()

# 3rd party libs
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF)
option(LLAMA_BLAS "llama: use BLAS" OFF)
option(LLAMA_BLAS_VENDOR "llama: BLA_VENDOR from https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors" Generic)
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)

Expand Down Expand Up @@ -145,36 +146,28 @@ if (APPLE AND LLAMA_ACCELERATE)
endif()
endif()

if (LLAMA_OPENBLAS)
if (LLAMA_BLAS)
if (LLAMA_STATIC)
set(BLA_STATIC ON)
endif()

set(BLA_VENDOR OpenBLAS)
if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22)
set(BLA_SIZEOF_INTEGER 8)
endif()
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
find_package(BLAS)
if (BLAS_FOUND)
message(STATUS "OpenBLAS found")
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")

add_compile_options(${BLAS_LINKER_FLAGS})
add_compile_definitions(GGML_USE_OPENBLAS)
add_link_options(${BLAS_LIBRARIES})
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas)

# find header file
set(OPENBLAS_INCLUDE_SEARCH_PATHS
/usr/include
/usr/include/openblas
/usr/include/openblas-base
/usr/local/include
/usr/local/include/openblas
/usr/local/include/openblas-base
/opt/OpenBLAS/include
$ENV{OpenBLAS_HOME}
$ENV{OpenBLAS_HOME}/include
)
find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
add_compile_options(-I${OPENBLAS_INC})
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})

message("${BLAS_LIBRARIES}")
include_directories(${BLAS_INCLUDE_DIRS})
else()
message(WARNING "OpenBLAS not found")
message(WARNING "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct LLAMA_BLAS_VENDOR")
endif()
endif()

Expand Down
4 changes: 4 additions & 0 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,10 @@ ifdef LLAMA_OPENBLAS
LDFLAGS += -lopenblas
endif
endif
ifdef LLAMA_BLIS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
LDFLAGS += -lblis -L/usr/local/lib
endif
ifdef LLAMA_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
Expand Down
19 changes: 17 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
- Mixed F16 / F32 precision
- 4-bit, 5-bit and 8-bit integer quantization support
- Runs on the CPU
- OpenBLAS support
- Supports OpenBLAS/Apple BLAS/ARM Performance Lib/ATLAS/BLIS/Intel MKL/NVHPC/ACML/SCSL/SGIMATH and [more](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) in BLAS
- cuBLAS and CLBlast support

The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
Expand Down Expand Up @@ -274,10 +274,25 @@ Building the program with BLAS support may lead to some performance improvements
```bash
mkdir build
cd build
cmake .. -DLLAMA_OPENBLAS=ON
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake --build . --config Release
```

- BLIS

Check [BLIS.md](BLIS.md) for more information.

- Intel MKL

By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:

```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build . -config Release
```

- cuBLAS

This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
Expand Down

0 comments on commit 07e9ace

Please sign in to comment.