fast-langdetect
is an ultra-fast and highly accurate language detection library based on FastText, a library developed by Facebook. Its incredible speed and accuracy make it 80x faster than conventional methods and deliver up to 95% accuracy.
- Supported Python
3.9
to3.13
. - Works offline in low memory mode
- No
numpy
required (thanks to @dalf).
This project builds upon zafercavdar/fasttext-langdetect with enhancements in packaging. For more information about the underlying model, see the official FastText documentation: Language Identification.
This library requires at least 200MB memory in low-memory mode.
To install fast-langdetect, you can use either pip
or pdm
:
pip install fast-langdetect
pdm add fast-langdetect
In scenarios where accuracy is important, you should not rely on the detection results of small models, use low_memory=False
to download larger models!
- The "\n" character in the argument string must be removed before calling the function.
- If the sample is too long or too short, the accuracy will be reduced.
- The model will be downloaded to system temporary directory by default. You can customize it by:
- Setting
FTLANG_CACHE
environment variable - Using
LangDetectConfig(cache_dir="your/path")
- Setting
from fast_langdetect import detect, detect_multilingual, LangDetector, LangDetectConfig, DetectError
# Simple detection
print(detect("Hello, world!"))
# Output: {'lang': 'en', 'score': 0.12450417876243591}
# Using large model for better accuracy
print(detect("Hello, world!", low_memory=False))
# Output: {'lang': 'en', 'score': 0.98765432109876}
# Custom configuration with fallback mechanism
config = LangDetectConfig(
cache_dir="/custom/cache/path", # Custom model cache directory
allow_fallback=True # Enable fallback to small model if large model fails
)
detector = LangDetector(config)
try:
result = detector.detect("Hello world", low_memory=False)
print(result) # {'lang': 'en', 'score': 0.98}
except DetectError as e:
print(f"Detection failed: {e}")
# How to deal with multiline text
multiline_text = """
Hello, world!
This is a multiline text.
But we need remove \n characters or it will raise a DetectError.
"""
multiline_text = multiline_text.replace("\n", " ")
print(detect(multiline_text))
# Output: {'lang': 'en', 'score': 0.8509423136711121}
# Multi-language detection
results = detect_multilingual(
"Hello 世界 こんにちは",
low_memory=False, # Use large model for better accuracy
k=3 # Return top 3 languages
)
print(results)
# Output: [
# {'lang': 'ja', 'score': 0.4},
# {'lang': 'zh', 'score': 0.3},
# {'lang': 'en', 'score': 0.2}
# ]
We provide a fallback mechanism: when allow_fallback=True
, if the program fails to load the large model (low_memory=False
), it will fall back to the offline small model to complete the prediction task.
# Disable fallback - will raise error if large model fails to load
# But fallback disabled when custom_model_path is not None, because its a custom model, we will directly use it.
import tempfile
config = LangDetectConfig(
allow_fallback=False,
custom_model_path=None,
cache_dir=tempfile.gettempdir(),
)
detector = LangDetector(config)
try:
result = detector.detect("Hello world", low_memory=False)
except DetectError as e:
print("Model loading failed and fallback is disabled")
from fast_langdetect import detect_language
# Single language detection
print(detect_language("Hello, world!"))
# Output: EN
print(detect_language("Привет, мир!"))
# Output: RU
print(detect_language("你好,世界!"))
# Output: ZH
# Load model from local file
config = LangDetectConfig(
custom_model_path="/path/to/your/model.bin", # Use local model file
disable_verify=True # Skip MD5 verification
)
detector = LangDetector(config)
result = detector.detect("Hello world")
For text splitting based on language, please refer to the split-lang repository.
For detailed benchmark results, refer to zafercavdar/fasttext-langdetect#benchmark.
[1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification
@article{joulin2016bag,
title={Bag of Tricks for Efficient Text Classification},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas},
journal={arXiv preprint arXiv:1607.01759},
year={2016}
}
[2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models
@article{joulin2016fasttext,
title={FastText.zip: Compressing text classification models},
author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas},
journal={arXiv preprint arXiv:1612.03651},
year={2016}
}