Skip to content

LightGT: A Light Graph Transformer for Multimedia Recommendation, SIGIR2023

Notifications You must be signed in to change notification settings

Liuwq-bit/LightGT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LightGT: A Light Graph Transformer for Multimedia Recommendation

This is our Pytorch implementation for the LightGT:

Yinwei Wei, Wenqi Liu, Fan Liu, Xiang Wang, Liqiang Nie and Tat-Seng Chua (2023). LightGT: A Light Graph Transformer for Multimedia Recommendation. In ACM SIGIR`23, Taipei, July. 23-27, 2023

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{LightGT,
  title     = {LightGT: A Light Graph Transformer for Multimedia Recommendation},
  author    = {Wei, Yinwei and
               Liu, Wenqi and 
               Liu, Fan and 
               Wang, Xiang and 
               Nie, Liqiang and 
               Chua, Tat-Seng},
  booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages     = {1508–1517},
  year      = {2023}
}

Environment Requirement

The code has been tested running under Python 3.8.15. The required packages are as follows:

  • Pytorch == 1.7.0
  • numpy == 1.23.4

Example to Run the Codes

The instruction of commands has been clearly stated in the codes.

  • Movielens dataset
    python main.py --l_r=1e-2 --weight_decay=1e-2 --src_len=50 --score_weight=0.05 --nhead=1 --transformer_layers=4 --batch_size=2048 --lightgcn_layers=4 --dataset=movielens

  • Tiktok dataset
    python main.py --l_r=1e-2 --weight_decay=1e-2 --src_len=50 --score_weight=0.05 --nhead=1 --transformer_layers=4 --batch_size=2048 --lightgcn_layers=4 --dataset=tiktok

  • Kwai dataset
    python main.py --l_r=1e-2 --weight_decay=1e-2 --src_len=50 --score_weight=0.05 --nhead=1 --transformer_layers=4 --batch_size=2048 --lightgcn_layers=4 --dataset=kwai

Dataset

You can find the full version of recommendation datasets via Kwai, Tiktok, and Movielens. Since the copyright of datasets, we cannot release them directly.

#Interactions #Users #Items Visual Acoustic Textual
Movielens 1,239,508 55,485 5,986 2,048 128 100
Tiktok 726,065 36,656 76,085 128 128 128
Kwai 1,664,305 22,611 329,510 2,048 - 100

It is worth noting that MMGCN provides corresponding toy datasets that can be used for research.

-train.npy Train file. Each line is a user with her/his positive interactions with items: (userID and micro-video ID)
-val.npy Validation file. Each line is a user several positive interactions with items: (userID and micro-video ID)
-test.npy Test file. Each line is a user with several positive interactions with items: (userID and micro-video ID)

About

LightGT: A Light Graph Transformer for Multimedia Recommendation, SIGIR2023

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages