This is our Pytorch implementation for the LightGT:
Yinwei Wei, Wenqi Liu, Fan Liu, Xiang Wang, Liqiang Nie and Tat-Seng Chua (2023). LightGT: A Light Graph Transformer for Multimedia Recommendation. In ACM SIGIR`23, Taipei, July. 23-27, 2023
If you want to use our codes and datasets in your research, please cite:
@inproceedings{LightGT,
title = {LightGT: A Light Graph Transformer for Multimedia Recommendation},
author = {Wei, Yinwei and
Liu, Wenqi and
Liu, Fan and
Wang, Xiang and
Nie, Liqiang and
Chua, Tat-Seng},
booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {1508–1517},
year = {2023}
}
The code has been tested running under Python 3.8.15. The required packages are as follows:
- Pytorch == 1.7.0
- numpy == 1.23.4
The instruction of commands has been clearly stated in the codes.
-
Movielens dataset
python main.py --l_r=1e-2 --weight_decay=1e-2 --src_len=50 --score_weight=0.05 --nhead=1 --transformer_layers=4 --batch_size=2048 --lightgcn_layers=4 --dataset=movielens
-
Tiktok dataset
python main.py --l_r=1e-2 --weight_decay=1e-2 --src_len=50 --score_weight=0.05 --nhead=1 --transformer_layers=4 --batch_size=2048 --lightgcn_layers=4 --dataset=tiktok
-
Kwai dataset
python main.py --l_r=1e-2 --weight_decay=1e-2 --src_len=50 --score_weight=0.05 --nhead=1 --transformer_layers=4 --batch_size=2048 --lightgcn_layers=4 --dataset=kwai
You can find the full version of recommendation datasets via Kwai, Tiktok, and Movielens. Since the copyright of datasets, we cannot release them directly.
#Interactions | #Users | #Items | Visual | Acoustic | Textual | |
---|---|---|---|---|---|---|
Movielens | 1,239,508 | 55,485 | 5,986 | 2,048 | 128 | 100 |
Tiktok | 726,065 | 36,656 | 76,085 | 128 | 128 | 128 |
Kwai | 1,664,305 | 22,611 | 329,510 | 2,048 | - | 100 |
It is worth noting that MMGCN provides corresponding toy datasets that can be used for research.
-train.npy
Train file. Each line is a user with her/his positive interactions with items: (userID and micro-video ID)
-val.npy
Validation file. Each line is a user several positive interactions with items: (userID and micro-video ID)
-test.npy
Test file. Each line is a user with several positive interactions with items: (userID and micro-video ID)