Skip to content

RAFConv: Innovating Spatital Attention and Standard Convolutional Operation

Notifications You must be signed in to change notification settings

Liuchen1997/RFAConv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

RFAConv: Innovating Spatial Attention and Standard Convolutional Operation(preprint)

This repository is a PyTorch implementation of our paper: RFAConv: Innovating Spatial Attention and Standard Convolutional Operation.

If you are interested in our other work, you can find information on https://github.com/CV-ZhangXin/LDConv.

The code has been opened, thank you for your support.

In the classification experiment, the code for Resnet comes from https://github.com/zgcr/pytorch-ImageNet-CIFAR-COCO-VOC-training

In the detection experiment, the YOLOv5&YOLOv8 code comes from https://github.com/ultralytics/yolov5, and the YOLOv7 code comes from https://github.com/WongKinYiu/yolov7.

The pre-training weights of the model on ImageNet-1k can be found in https://pan.baidu.com/s/1kvPyLie0OeOB2CGQxdUT0g. The verification code is "rfac".


Numerical results on ImageNet

Mdels

FLOPS(G)

Params(M)

Top1

Top5

Resnet18

1.82

11.69

69.59

89.05

+CAMConv(r)

1.83

11.75

70.76

89.74

+CBAMConv(r)

1.83

11.75

69.38

89.12

+CAConv(r)

1.83

11.74

70.58

89.59

+RFAConv(r)

1.91

11.85

71.23

90.29

+RFCAConv(r)

1.92

11.89

72.01

90.64

+RFCBAMConv(r)

1.90

11.88

72.15

90.71

Mdels

FLOPS(G)

Params(M)

Top1

Top5

Resnet34

3.68

21.80

73.33

91.37

+CAMConv(r)

3.68

21.93

74.03

91.69

+CBAMConv(r)

3.68

21.93

72.95

91.26

+CAConv(r)

3.68

21.91

73.76

91.68

+RFAConv(r)

3.84

22.16

74.25

92.03

Object detection

Results on Pascal VOC 2007+2012 validation sets

Mdels

FLOPS(G)

Params(M)

mAP50

mAP

time

YOLOv5n

4.2

1.8

67.8

41.5

2.7

+CAMConv(r)

4.2

1.8

67.8

41.4

2.9

+CBAMConv(r)

4.3

1.8

68.1

41.9

3.0

+CAConv(r)

4.3

1.8

68.4

42.4

3.0

+RFAConv(r)

4.5

1.8

69.5

43.3

3.0

Mdels

FLOPS(G)

Params(M)

mAP50

mAP

time

YOLOv5s

15.9

7.1

74.4

48.9

3

+CAMConv(r)

16.0

7.1

73.9

48.5

3.5

+CBAMConv(r)

16.0

7.1

74.1

49.0

3.7

+CAConv(r)

16.1

7.1

75

49.6

3.1

+RFAConv(r)

16.4

7.2

75

50.0

5.1

+RFCBAMConv(r)

16.4

7.2

75.1

50.1

3.9

+RFCAConv(r)

16.6

7.2

75.6

51.0

4.4

Mdels

FLOPS(G)

Params(M)

mAP50

mAP

time

YOLOv7-tiny

13.2

6.1

76.4

50.2

5.0

+CAMConv(r)

13.2

6.1

76.3

50.3

5.4

+CBAMConv(r)

13.2

6.1

76.5

50.1

5.4

+CAConv(r)

13.2

6.1

76.6

50.5

5.4

+RFAConv(r)

13.6

6.1

76.7

50.6

7.5

Mdels

FLOPS(G)

Params(M)

mAP50

mAP

time

YOLOv8n

8.1

3.0

74.0

53.5

3.0

+CAMConv(r)

8.1

3.0

73.8

52.8

3.1

+CBAMConv(r)

8.2

3.0

74.4

53.3

3.1

+CAConv(r)

8.2

3.0

74.5

53.8

2.9

+RFAConv(r)

8.4

3.1

74.7

54.0

3.2

Results on COCO validation sets

Mdels

FLOPS(G)

Params(M)

AP50

AP75

AP

APs

APm

APl

time

YOLOv5n

4.5

1.8

45.6

28.9

27.5

13.5

31.5

35.9

4.4

+CAMConv(r)

4.5

1.8

45.6

28.3

27.4

13.8

31.4

35.8

5.2

+CBAMConv(r)

4.5

1.8

45.5

28.6

27.6

13.6

31.2

36.6

5.4

+CAConv(r)

4.5

1.8

46.2

29.2

28.1

14.3

32

36.6

4.8

+RFAConv(r)

4.7

1.9

47.3

30.6

29.0

14.8

33.4

37.4

5.3

 

Mdels

FLOPS(G)

Params(M)

AP50

AP75

AP

APs

APm

APl

time

YOLOv7-tiny

13.7

6.2

53.8

38.3

35.9

19.9

39.4

48.8

6.8

+RFAConv(r)

14.1

6.3

55.1

40.1

37.1

20.9

41.1

50.0

8.4

 

Mdels

FLOPS(G)

Params(M)

AP50

AP75

AP

APs

APm

APl

time

YOLOv8n

8.7

3.1

51.9

39.7

36.4

18.4

40.1

52

4.2

+CAMConv(r)

8.8

3.1

51.6

39.0

36.2

18.0

39.9

51.2

4.5

+CBAMConv(r)

8.8

3.1

51.5

39.6

36.3

18.3

40.1

51.5

4.6

+CAConv(r)

8.8

3.1

52.1

39.9

36.7

17.8

40.3

51.6

4.3

+RFAConv(r)

9.0

3.2

53.4

41.1

37.7

18.9

41.8

52.7

4.5

+RFCAConv(r)

9.1

3.2

53.9

41.7

38.2

19.7

42.3

53.5

4.7

 

Citation

You may want to cite:

@misc{zhang2023rfaconv,
      title={RFAConv: Innovating Spatial Attention and Standard Convolutional Operation}, 
      author={Xin Zhang and Chen Liu and Degang Yang and Tingting Song and Yichen Ye and Ke Li and Yingze Song},
      year={2023},
      eprint={2304.03198},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}