Skip to content

Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation (KDD'24)

Notifications You must be signed in to change notification settings

Linxyhaha/TransRec

Repository files navigation

Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation

💡 This is the implementation of our paper accepted by KDD 2024.

Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation

Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng Chua

Install

sudo apt install swig
env CFLAGS='-fPIC' CXXFLAGS='-fPIC' res/external/sdsl-lite/install.sh
pip install -r requirements.txt
pip install -e .

Usage

Data

The experimental data are in './data' folder, including Beauty, Yelp, and Toys.

⚪ Item Indexing and Data Reconstruction

Reconstruct the training and the vaidation data based on multi-facet identifiers by running reconstruct.py

for FILE in train dev; do
    python scripts/trainining/reconstruct.py 
        ./data/${dataset}/rec_data ./data/${dataset}/reconstructed/tuning/$FILE 
        --n_substring ${num_substring}

or use reconstruct.sh

sh reconstruct.sh <dataset> <num_substring>

The reconstructed data for tuning LLMs is saved in './data/${dataset}/reconstructed/tuning/' folder. Reconstruct the testing data based on multi-facet identifiers by running make_evaluate.py

python scripts/evaluation/make_evaluate.py 
    ./data/${dataset}/rec_data ./data/${dataset}/reconstructed/evaluation/ 

or use make_evaluate.sh

sh make_evaluate.sh <dataset>

The reconstructed testing data is saved in './data/${dataset}/reconstructed/evaluation/' folder.

🔴 Training

  1. Before training, we need to do pre-process for fairseq training
sh preprocess_fairseq.sh <dataset>
  1. We then use the fairseq to train TransRec-BART. The script for training is
fairseq-train
    data/${dataset}/bin 
    --finetune-from-model /bart.large/model.pt 
    --arch bart_large 
    --task translation 
    --criterion label_smoothed_cross_entropy 
    --source-lang source 
    --target-lang target 
    --truncate-source 
    --label-smoothing 0.1 
    --max-tokens 4096 
    --update-freq 1 
    --max-update 800000 
    --required-batch-size-multiple 1
    --validate-interval 1000000
    --save-interval 1000000
    --save-interval-updates 15000 
    --keep-interval-updates 3 
    --dropout 0.1 
    --attention-dropout 0.1 
    --relu-dropout 0.0 
    --weight-decay 0.01 
    --optimizer adam 
    --adam-betas "(0.9, 0.999)" 
    --adam-eps 1e-08 
    --clip-norm 0.1 
    --lr-scheduler polynomial_decay 
    --lr 3e-05 
    --total-num-update 800000 
    --warmup-updates 500 
    --fp16 
    --num-workers 10 
    --no-epoch-checkpoints 
    --share-all-embeddings 
    --layernorm-embedding 
    --share-decoder-input-output-embed 
    --skip-invalid-size-inputs-valid-test 
    --log-format json
    --log-interval 100 
    --patience 5
    --find-unused-parameters
    --save-dir checkpoints_${dataset}

or use training_fairseq.sh

cd scripts/training
sh training_fairseq.sh <dataset> 

The model will be saved in the 'scirpts/training/checkpoints_${dataset}/' folder, where ${dataset} can be chosen from "beauty", "toys", and "yelp".

🔵 Inference

Step 0. Building FM-index

Build the FM-index by running build_fm_index.py

python build_fm_index.py --dataset <dataset>

The FM-index will be saved in './data/${dataset}/fm_index/' folder.

Step 1. Generation grounding

Get the recommended items of TransRec by running generate.py

python generation_grounding/generate.py 
    --jobs 20  --progress --device cuda:0 --batch_size 8 --beam 20 
    --input ./data/${dataset}/evaluation/instruction_input.json 
    --output output/${dataset}_output.json 
    --checkpoint ./scripts/training/checkpoints_${dataset}/checkpoint_best.pt 
    --fm_index ./data/${dataset}/fm_index 
    --intra_facet_exponent ${gamma}
    --score_bias_id ${bias_id} --score_bias_title ${bias_title} --score_bias_attribute ${bias_attribute} 

or use generate.sh

sh generate.sh <dataset> <gamma> <bias_id> <bias_title> <bias_attribute> 

The explanation of hyper-parameters and the default hyper-parameters can be found in 'hyper-parameters.txt'.

Step 2. Evaluation

Get the evaluation results of TransRec by running evaluate.py

python evaluation/evaluate.py --dataset ${dataset}

Example

  1. Reconstruct the instruction data of Beauty for tuning LLMs and evaluation.
sh reconstruct.sh beauty 5
sh make_evaluate.sh beauty
  1. Train on Beauty dataset.
cd scripts/training
sh training_fairseq.sh beauty
  1. Build FM-index.
python build_fm_index.py --dataset beauty
  1. Generate and ground the identifier to in-corpus items.
sh generate.sh 3 12 0 5
  1. Evaluate.
python evaluation/evaluate.py --dataset beauty

Citation

If you find our work is useful for your research, please consider citing:

@inproceedings{lin2024bridge,
  title={Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation},
  author={Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-Kiong Ng, Tat-Seng Chua},
  booktitle={KDD},
  year={2024}
}

License

NUS © NExT++

Acknowledgement

Part of the code is based on SEAL and sdsl-life.

About

Bridging Items and Language: A Transition Paradigm for Large Language Model-Based Recommendation (KDD'24)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages