Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bugfix for empty preds or target in iou scores #2806

Merged
merged 5 commits into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Fixed

-
- Fixed iou scores in detection for either empty predictions/targets leading to wrong scores ([#2805](https://github.com/Lightning-AI/torchmetrics/pull/2805))


---
Expand Down
13 changes: 8 additions & 5 deletions src/torchmetrics/detection/iou.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,14 +182,17 @@ def update(self, preds: List[Dict[str, Tensor]], target: List[Dict[str, Tensor]]
"""Update state with predictions and targets."""
_input_validator(preds, target, ignore_score=True)

for p, t in zip(preds, target):
det_boxes = self._get_safe_item_values(p["boxes"])
gt_boxes = self._get_safe_item_values(t["boxes"])
self.groundtruth_labels.append(t["labels"])
for p_i, t_i in zip(preds, target):
det_boxes = self._get_safe_item_values(p_i["boxes"])
gt_boxes = self._get_safe_item_values(t_i["boxes"])
self.groundtruth_labels.append(t_i["labels"])

iou_matrix = self._iou_update_fn(det_boxes, gt_boxes, self.iou_threshold, self._invalid_val) # N x M
if self.respect_labels:
label_eq = p["labels"].unsqueeze(1) == t["labels"].unsqueeze(0) # N x M
if det_boxes.numel() > 0 and gt_boxes.numel() > 0:
label_eq = p_i["labels"].unsqueeze(1) == t_i["labels"].unsqueeze(0) # N x M
else:
label_eq = torch.eye(iou_matrix.shape[0], dtype=bool, device=iou_matrix.device)
iou_matrix[~label_eq] = self._invalid_val
self.iou_matrix.append(iou_matrix)

Expand Down
5 changes: 5 additions & 0 deletions src/torchmetrics/functional/detection/ciou.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@ def _ciou_update(

from torchvision.ops import complete_box_iou

if preds.numel() == 0: # if no boxes are predicted
return torch.zeros(target.shape[0], target.shape[0], device=target.device, dtype=torch.float32)
if target.numel() == 0: # if no boxes are true
return torch.zeros(preds.shape[0], preds.shape[0], device=preds.device, dtype=torch.float32)

iou = complete_box_iou(preds, target)
if iou_threshold is not None:
iou[iou < iou_threshold] = replacement_val
Expand Down
5 changes: 5 additions & 0 deletions src/torchmetrics/functional/detection/diou.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@ def _diou_update(

from torchvision.ops import distance_box_iou

if preds.numel() == 0: # if no boxes are predicted
return torch.zeros(target.shape[0], target.shape[0], device=target.device, dtype=torch.float32)
if target.numel() == 0: # if no boxes are true
return torch.zeros(preds.shape[0], preds.shape[0], device=preds.device, dtype=torch.float32)

iou = distance_box_iou(preds, target)
if iou_threshold is not None:
iou[iou < iou_threshold] = replacement_val
Expand Down
5 changes: 5 additions & 0 deletions src/torchmetrics/functional/detection/giou.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,11 @@ def _giou_update(

from torchvision.ops import generalized_box_iou

if preds.numel() == 0: # if no boxes are predicted
return torch.zeros(target.shape[0], target.shape[0], device=target.device, dtype=torch.float32)
if target.numel() == 0: # if no boxes are true
return torch.zeros(preds.shape[0], preds.shape[0], device=preds.device, dtype=torch.float32)

iou = generalized_box_iou(preds, target)
if iou_threshold is not None:
iou[iou < iou_threshold] = replacement_val
Expand Down
5 changes: 5 additions & 0 deletions src/torchmetrics/functional/detection/iou.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,11 @@ def _iou_update(

from torchvision.ops import box_iou

if preds.numel() == 0: # if no boxes are predicted
return torch.zeros(target.shape[0], target.shape[0], device=target.device, dtype=torch.float32)
if target.numel() == 0: # if no boxes are true
return torch.zeros(preds.shape[0], preds.shape[0], device=preds.device, dtype=torch.float32)

iou = box_iou(preds, target)
if iou_threshold is not None:
iou[iou < iou_threshold] = replacement_val
Expand Down
37 changes: 37 additions & 0 deletions tests/unittests/detection/test_intersection.py
Original file line number Diff line number Diff line change
Expand Up @@ -353,6 +353,43 @@ def test_corner_case_only_one_empty_prediction(self, class_metric, functional_me
for val in res.values():
assert val == torch.tensor(0.0)

def test_empty_preds_and_target(self, class_metric, functional_metric, reference_metric):
"""Check that for either empty preds and targets that the metric returns 0 in these cases before averaging."""
x = [
{
"boxes": torch.empty(size=(0, 4), dtype=torch.float32),
"labels": torch.tensor([], dtype=torch.long),
},
{
"boxes": torch.FloatTensor([[0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4]]),
"labels": torch.LongTensor([1, 2]),
},
]

y = [
{
"boxes": torch.FloatTensor([[0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4]]),
"labels": torch.LongTensor([1, 2]),
"scores": torch.FloatTensor([0.9, 0.8]),
},
{
"boxes": torch.FloatTensor([[0.1, 0.1, 0.2, 0.2], [0.3, 0.3, 0.4, 0.4]]),
"labels": torch.LongTensor([1, 2]),
"scores": torch.FloatTensor([0.9, 0.8]),
},
]
metric = class_metric()
metric.update(x, y)
res = metric.compute()
for val in res.values():
assert val == torch.tensor(0.5)

metric = class_metric()
metric.update(y, x)
res = metric.compute()
for val in res.values():
assert val == torch.tensor(0.5)


def test_corner_case():
"""See issue: https://github.com/Lightning-AI/torchmetrics/issues/1921."""
Expand Down
Loading