Skip to content

LiaoLW/yolov3

 
 

Repository files navigation

 

This repo contains Ultralytics inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Credit to Joseph Redmon for YOLO https://pjreddie.com/darknet/yolo/.

Requirements

Python 3.7 or later with all requirements.txt dependencies installed, including torch >= 1.5. To install run:

$ pip install -U -r requirements.txt

Tutorials

Training

Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco2017.sh. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

Resume Training: python3 train.py --resume to resume training from weights/last.pt.

Plot Training: from utils import utils; utils.plot_results()

Image Augmentation

datasets.py applies OpenCV-powered (https://opencv.org/) augmentation to the input image. We use a mosaic dataloader to increase image variability during training.

Speed

https://cloud.google.com/deep-learning-vm/
Machine type: preemptible n1-standard-8 (8 vCPUs, 30 GB memory)
CPU platform: Intel Skylake
GPUs: K80 ($0.14/hr), T4 ($0.11/hr), V100 ($0.74/hr) CUDA with Nvidia Apex FP16/32
HDD: 300 GB SSD
Dataset: COCO train 2014 (117,263 images)
Model: yolov3-spp.cfg
Command: python3 train.py --data coco2017.data --img 416 --batch 32

GPU n --batch-size img/s epoch
time
epoch
cost
K80 1 32 x 2 11 175 min $0.41
T4 1
2
32 x 2
64 x 1
41
61
48 min
32 min
$0.09
$0.11
V100 1
2
32 x 2
64 x 1
122
178
16 min
11 min
$0.21
$0.28
2080Ti 1
2
32 x 2
64 x 1
81
140
24 min
14 min
-
-

Inference

python3 detect.py --source ...
  • Image: --source file.jpg
  • Video: --source file.mp4
  • Directory: --source dir/
  • Webcam: --source 0
  • RTSP stream: --source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa
  • HTTP stream: --source http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8

YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.pt

YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.pt

YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt

Pretrained Checkpoints

Download from: https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0

Darknet Conversion

$ git clone https://github.com/ultralytics/yolov3 && cd yolov3

# convert darknet cfg/weights to pytorch model
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'weights/yolov3-spp.pt'

# convert cfg/pytorch model to darknet weights
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'weights/yolov3-spp.weights'

mAP

Size COCO mAP
@0.5...0.95
COCO mAP
@0.5
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP-ultralytics
320 14.0
28.7
30.5
37.7
29.1
51.8
52.3
56.8
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP-ultralytics
416 16.0
31.2
33.9
41.2
33.0
55.4
56.9
60.6
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP-ultralytics
512 16.6
32.7
35.6
42.6
34.9
57.7
59.5
62.4
YOLOv3-tiny
YOLOv3
YOLOv3-SPP
YOLOv3-SPP-ultralytics
608 16.6
33.1
37.0
43.1
35.4
58.2
60.7
62.8
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment

Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=640, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weight
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)

               Class    Images   Targets         P         R   mAP@0.5        F1: 100%|█████████| 313/313 [03:00<00:00,  1.74it/s]
                 all     5e+03  3.51e+04     0.375     0.743      0.64     0.492

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.456
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.647
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.496
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.596
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.361
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.597
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.666
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.492
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810

Speed: 17.5/2.3/19.9 ms inference/NMS/total per 640x640 image at batch-size 16

Reproduce Our Results

Run commands below. Training takes about one week on a 2080Ti per model.

$ python train.py --data coco2014.data --weights '' --batch-size 16 --cfg yolov3-spp.cfg
$ python train.py --data coco2014.data --weights '' --batch-size 32 --cfg yolov3-tiny.cfg

Reproduce Our Environment

To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

Citation

DOI

About Us

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

  • Cloud-based AI systems operating on hundreds of HD video streams in realtime.
  • Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
  • Custom data training, hyperparameter evolution, and model exportation to any destination.

For business inquiries and professional support requests please visit us at https://www.ultralytics.com.

Contact

Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.

About

YOLOv3 in PyTorch > ONNX > CoreML > iOS

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 82.6%
  • Python 16.7%
  • Other 0.7%