Skip to content

LewisLiuPub/ros2_openvino_toolkit

 
 

Repository files navigation

ros2_openvino_toolkit

1. Introduction

The OpenVINO™ toolkit quickly deploys applications and solutions that emulate human vision. Based on Convolutional Neural Networks (CNN), the Toolkit extends computer vision (CV) workloads across Intel® hardware, maximizing performance.

This project is a ROS2 wrapper for CV API of OpenVINO™, providing the following features:

  • Support CPU and GPU platforms
  • Support standard USB camera and Intel® RealSense™ camera
  • Support Video or Image file as detection source
  • Face detection
  • Emotion recognition
  • Age and gender recognition
  • Head pose recognition
  • Demo application to show above detection and recognitions

2. Prerequisite

  • An x86_64 computer running Ubuntu 16.04. Below processors are supported:

    • 6th-8th Generation Intel® Core™
    • Intel® Xeon® v5 family
    • Intel® Xeon® v6 family
  • ROS2 Bouncy

  • OpenVINO™ Toolkit

  • RGB Camera, e.g. RealSense D400 Series or standard USB camera or Video/Image File

  • Graphics are required only if you use a GPU. The official system requirements for GPU are:

    • 6th to 8th generation Intel® Core™ processors with Iris® Pro graphics and Intel® HD Graphics
    • 6th to 8th generation Intel® Xeon® processors with Iris Pro graphics and Intel HD Graphics (excluding the e5 product family, which does not have graphics)
    • Intel® Pentium® processors N4200/5, N3350/5, N3450/5 with Intel HD Graphics

    Use one of the following methods to determine the GPU on your hardware:

    1. [lspci] command: GPU info may lie in the [VGA compatible controller] line.
    2. Ubuntu system: Menu [System Settings] --> [Details] may help you find the graphics information.
    3. Openvino: Download the install package, install_GUI.sh inside will check the GPU information before installation.

3. Environment Setup

cd /opt/intel/computer_vision_sdk/install_dependencies
sudo ./install_NEO_OCL_driver.sh
  • Other Dependencies
# numpy
pip3 install numpy
# libboost
sudo apt-get install -y --no-install-recommends libboost-all-dev
cd /usr/lib/x86_64-linux-gnu
sudo ln -s libboost_python-py35.so libboost_python3.so

4. Building and Installation

  • Build sample code under openvino toolkit
# root is required instead of sudo
source /opt/intel/computer_vision_sdk/bin/setupvars.sh
cd /opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples/
mdkir build
cd build
cmake ..
make
  • Install ROS2_OpenVINO packages
mkdir -p ~/ros2_overlay_ws/src
cd ~/ros2_overlay_ws/src
git clone https://github.com/intel/ros2_openvino_toolkit
git clone https://github.com/intel/ros2_object_msgs
git clone https://github.com/ros-perception/vision_opencv -b ros2
  • Build package
source ~/ros2_ws/install/local_setup.bash
cd ~/ros2_overlay_ws
colcon build --symlink-install

5. Running the Demo

  1. Preparation

    • copy label files (excute once)
    sudo cp ~/ros2_overlay_ws/src/ros2_openvino/data/labels/emotions-recognition/FP32/emotions-recognition-retail-0003.labels /opt/intel/computer_vision_sdk/deployment_tools/intel_models/emotions-recognition-retail-0003/FP32
    • set OpenVINO toolkit ENV
    source /opt/intel/computer_vision_sdk/bin/setupvars.sh
    • set ENV LD_LIBRARY_PATH
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/computer_vision_sdk/deployment_tools/inference_engine/samples/build/intel64/Release/lib
  2. run sample code with command-line arguments for image or video detection

ros2 run dynamic_vino_sample dynamic_vino_sample -m <model_path_for_face_detection> -m_em <model_path_for_emotion_detection> -m_ag <model_path_for_age_and_gender_detection> -m-hp <model_path_for_headpose_detection> -i <input_type> -i_path <file_directory> -d <device> -d_em <device> -d_ag <device> -d_hp <device>

Options for <input_type>: Image or Video.

Options for <device>: CPU or GPU. Default is CPU.

For example,

ros2 run dynamic_vino_sample dynamic_vino_sample -m /opt/intel/computer_vision_sdk/deployment_tools/intel_models/face-detection-adas-0001/FP32/face-detection-adas-0001.xml -m_em /opt/intel/computer_vision_sdk/deployment_tools/intel_models/emotions-recognition-retail-0003/FP32/emotions-recognition-retail-0003.xml -m_ag /opt/intel/computer_vision_sdk/deployment_tools/intel_models/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013.xml -m-hp /opt/intel/computer_vision_sdk/deployment_tools/intel_models/head-pose-estimation-adas-0001/FP32/head-pose-estimation-adas-0001.xml -i Image -i_path <file_directory> -d CPU -d_em CPU -d_ag GPU -d_hp GPU
  1. run sample code with command-line arguments for video stream from camera detection
ros2 run dynamic_vino_sample dynamic_vino_sample -m <model_path_for_face_detection> -m_em <model_path_for_emotion_detection> -m_ag <model_path_for_age_and_gender_detection> -m-hp <model_path_for_headpose_detection> -i <input_type> -d <device> -d_em <device> -d_ag <device> -d_hp <device>

Options for <input_type>: StandardCamera or RealSenseCamera. Default is StandardCamera.

Options for <device>: CPU or GPU. Default is CPU.

For example,

ros2 run dynamic_vino_sample dynamic_vino_sample -m /opt/intel/computer_vision_sdk/deployment_tools/intel_models/face-detection-adas-0001/FP32/face-detection-adas-0001.xml -m_em /opt/intel/computer_vision_sdk/deployment_tools/intel_models/emotions-recognition-retail-0003/FP32/emotions-recognition-retail-0003.xml -m_ag /opt/intel/computer_vision_sdk/deployment_tools/intel_models/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013.xml -m-hp /opt/intel/computer_vision_sdk/deployment_tools/intel_models/head-pose-estimation-adas-0001/FP32/head-pose-estimation-adas-0001.xml -i StandardCamera -d CPU -d_em CPU -d_ag GPU -d_hp GPU
  1. run sample code with parameters extracted from yaml.
ros2 run dynamic_vino_sample pipeline_with_params

6. Interfaces

6.1 Topic

7. Known Issues

  • Parameters "-m_ag, -m_hp, -m_em" should be optional, but samples throw exception without them.
  • Parameters "-n_ag, -n_hp, -n_em" doesn't work. The maximum number of face/age/headpose/emotion is always 16.
  • Standard USB camera can be unexpected launched with input parameter "-i RealSenseCamera".
Any security issue should be reported using process at https://01.org/security

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 81.6%
  • CMake 12.6%
  • C 5.8%