Skip to content

Commit

Permalink
Support Pettingzoo Multi-agent Atari envs with PPO (vwxyzjn#188)
Browse files Browse the repository at this point in the history
* Pettingzoo integration

* Add test cases

* pre-commit

* Fix CI

* remove windows CI and add docs

* Update docs

* Add benchmark

* Update docs

* change color
  • Loading branch information
vwxyzjn authored Jun 1, 2022
1 parent f00242d commit e547cc7
Show file tree
Hide file tree
Showing 11 changed files with 562 additions and 15 deletions.
28 changes: 28 additions & 0 deletions .github/workflows/tests.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -206,3 +206,31 @@ jobs:
run: poetry run pip install setuptools==59.5.0
- name: Run atari tests
run: poetry run pytest tests/test_atari_multigpu.py

test-pettingzoo-envs:
strategy:
fail-fast: false
matrix:
python-version: [3.8]
poetry-version: [1.1.11]
os: [ubuntu-18.04, macos-latest]
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2
- uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Run image
uses: abatilo/actions-poetry@v2.0.0
with:
poetry-version: ${{ matrix.poetry-version }}

# pettingzoo tests
- name: Install pettingzoo dependencies
run: poetry install -E "pytest pettingzoo atari"
- name: Downgrade setuptools
run: poetry run pip install setuptools==59.5.0
- name: Install ROMs
run: poetry run AutoROM --accept-license
- name: Run pettingzoo tests
run: poetry run pytest tests/test_pettingzoo_ma_atari.py
2 changes: 1 addition & 1 deletion .gitpod.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ github:
# enable for pull requests coming from forks (defaults to false)
pullRequestsFromForks: true
# add a "Review in Gitpod" button as a comment to pull requests (defaults to true)
addComment: true
addComment: false
# add a "Review in Gitpod" button to pull requests (defaults to false)
addBadge: false
# add a label once the prebuild is ready to pull requests (defaults to false)
Expand Down
8 changes: 8 additions & 0 deletions benchmark/ppo.sh
Original file line number Diff line number Diff line change
Expand Up @@ -49,3 +49,11 @@ xvfb-run -a python -m cleanrl_utils.benchmark \
--command "poetry run torchrun --standalone --nnodes=1 --nproc_per_node=2 cleanrl/ppo_atari_multigpu.py --track --capture-video" \
--num-seeds 3 \
--workers 1

poetry install -E "pettingzoo atari"
poetry run AutoROM --accept-license
xvfb-run -a python -m cleanrl_utils.benchmark \
--env-ids pong_v3 surround_v2 tennis_v3 \
--command "poetry run python cleanrl/ppo_pettingzoo_ma_atari.py --track --capture-video" \
--num-seeds 3 \
--workers 3
326 changes: 326 additions & 0 deletions cleanrl/ppo_pettingzoo_ma_atari.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,326 @@
import argparse
import importlib
import os
import random
import time
from distutils.util import strtobool

import gym
import numpy as np
import supersuit as ss
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter


def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="weather to capture videos of the agent performances (check out `videos` folder)")

# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="pong_v3",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=20000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=2.5e-4,
help="the learning rate of the optimizer")
parser.add_argument("--num-envs", type=int, default=16,
help="the number of parallel game environments")
parser.add_argument("--num-steps", type=int, default=128,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Use GAE for advantage computation")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--gae-lambda", type=float, default=0.95,
help="the lambda for the general advantage estimation")
parser.add_argument("--num-minibatches", type=int, default=4,
help="the number of mini-batches")
parser.add_argument("--update-epochs", type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles advantages normalization")
parser.add_argument("--clip-coef", type=float, default=0.1,
help="the surrogate clipping coefficient")
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
parser.add_argument("--ent-coef", type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument("--vf-coef", type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument("--max-grad-norm", type=float, default=0.5,
help="the maximum norm for the gradient clipping")
parser.add_argument("--target-kl", type=float, default=None,
help="the target KL divergence threshold")
args = parser.parse_args()
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
# fmt: on
return args


def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer


class Agent(nn.Module):
def __init__(self, envs):
super().__init__()
self.network = nn.Sequential(
layer_init(nn.Conv2d(6, 32, 8, stride=4)),
nn.ReLU(),
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
nn.ReLU(),
nn.Flatten(),
layer_init(nn.Linear(64 * 7 * 7, 512)),
nn.ReLU(),
)
self.actor = layer_init(nn.Linear(512, envs.single_action_space.n), std=0.01)
self.critic = layer_init(nn.Linear(512, 1), std=1)

def get_value(self, x):
x = x.clone()
x[:, :, :, [0, 1, 2, 3]] /= 255.0
return self.critic(self.network(x.permute((0, 3, 1, 2))))

def get_action_and_value(self, x, action=None):
x = x.clone()
x[:, :, :, [0, 1, 2, 3]] /= 255.0
hidden = self.network(x.permute((0, 3, 1, 2)))
logits = self.actor(hidden)
probs = Categorical(logits=logits)
if action is None:
action = probs.sample()
return action, probs.log_prob(action), probs.entropy(), self.critic(hidden)


if __name__ == "__main__":
args = parse_args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb

wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)

# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic

device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

# env setup
env = importlib.import_module(f"pettingzoo.atari.{args.env_id}").parallel_env()
env = ss.max_observation_v0(env, 2)
env = ss.frame_skip_v0(env, 4)
env = ss.clip_reward_v0(env, lower_bound=-1, upper_bound=1)
env = ss.color_reduction_v0(env, mode="B")
env = ss.resize_v1(env, x_size=84, y_size=84)
env = ss.frame_stack_v1(env, 4)
env = ss.agent_indicator_v0(env, type_only=False)
env = ss.pettingzoo_env_to_vec_env_v1(env)
envs = ss.concat_vec_envs_v1(env, args.num_envs // 2, num_cpus=0, base_class="gym")
envs.single_observation_space = envs.observation_space
envs.single_action_space = envs.action_space
envs.is_vector_env = True
envs = gym.wrappers.RecordEpisodeStatistics(envs)
if args.capture_video:
envs = gym.wrappers.RecordVideo(envs, f"videos/{run_name}")
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"

agent = Agent(envs).to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)

# ALGO Logic: Storage setup
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)

# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
next_obs = torch.Tensor(envs.reset()).to(device)
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size

for update in range(1, num_updates + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow

for step in range(0, args.num_steps):
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done

# ALGO LOGIC: action logic
with torch.no_grad():
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob

# TRY NOT TO MODIFY: execute the game and log data.
next_obs, reward, done, info = envs.step(action.cpu().numpy())
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)

for idx, item in enumerate(info):
player_idx = idx % 2
if "episode" in item.keys():
print(f"global_step={global_step}, {player_idx}-episodic_return={item['episode']['r']}")
writer.add_scalar(f"charts/episodic_return-player{player_idx}", item["episode"]["r"], global_step)
writer.add_scalar(f"charts/episodic_length-player{player_idx}", item["episode"]["l"], global_step)

# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
next_return = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
next_return = returns[t + 1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values

# flatten the batch
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)

# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]

_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()

with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]

mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)

# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()

# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()

entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef

optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()

if args.target_kl is not None:
if approx_kl > args.target_kl:
break

y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y

# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)

envs.close()
writer.close()
Loading

0 comments on commit e547cc7

Please sign in to comment.