forked from vwxyzjn/cleanrl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Pettingzoo Multi-agent Atari envs with PPO (vwxyzjn#188)
* Pettingzoo integration * Add test cases * pre-commit * Fix CI * remove windows CI and add docs * Update docs * Add benchmark * Update docs * change color
- Loading branch information
Showing
11 changed files
with
562 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,326 @@ | ||
import argparse | ||
import importlib | ||
import os | ||
import random | ||
import time | ||
from distutils.util import strtobool | ||
|
||
import gym | ||
import numpy as np | ||
import supersuit as ss | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.distributions.categorical import Categorical | ||
from torch.utils.tensorboard import SummaryWriter | ||
|
||
|
||
def parse_args(): | ||
# fmt: off | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"), | ||
help="the name of this experiment") | ||
parser.add_argument("--seed", type=int, default=1, | ||
help="seed of the experiment") | ||
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | ||
help="if toggled, `torch.backends.cudnn.deterministic=False`") | ||
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | ||
help="if toggled, cuda will be enabled by default") | ||
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, | ||
help="if toggled, this experiment will be tracked with Weights and Biases") | ||
parser.add_argument("--wandb-project-name", type=str, default="cleanRL", | ||
help="the wandb's project name") | ||
parser.add_argument("--wandb-entity", type=str, default=None, | ||
help="the entity (team) of wandb's project") | ||
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True, | ||
help="weather to capture videos of the agent performances (check out `videos` folder)") | ||
|
||
# Algorithm specific arguments | ||
parser.add_argument("--env-id", type=str, default="pong_v3", | ||
help="the id of the environment") | ||
parser.add_argument("--total-timesteps", type=int, default=20000000, | ||
help="total timesteps of the experiments") | ||
parser.add_argument("--learning-rate", type=float, default=2.5e-4, | ||
help="the learning rate of the optimizer") | ||
parser.add_argument("--num-envs", type=int, default=16, | ||
help="the number of parallel game environments") | ||
parser.add_argument("--num-steps", type=int, default=128, | ||
help="the number of steps to run in each environment per policy rollout") | ||
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | ||
help="Toggle learning rate annealing for policy and value networks") | ||
parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | ||
help="Use GAE for advantage computation") | ||
parser.add_argument("--gamma", type=float, default=0.99, | ||
help="the discount factor gamma") | ||
parser.add_argument("--gae-lambda", type=float, default=0.95, | ||
help="the lambda for the general advantage estimation") | ||
parser.add_argument("--num-minibatches", type=int, default=4, | ||
help="the number of mini-batches") | ||
parser.add_argument("--update-epochs", type=int, default=4, | ||
help="the K epochs to update the policy") | ||
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | ||
help="Toggles advantages normalization") | ||
parser.add_argument("--clip-coef", type=float, default=0.1, | ||
help="the surrogate clipping coefficient") | ||
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True, | ||
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.") | ||
parser.add_argument("--ent-coef", type=float, default=0.01, | ||
help="coefficient of the entropy") | ||
parser.add_argument("--vf-coef", type=float, default=0.5, | ||
help="coefficient of the value function") | ||
parser.add_argument("--max-grad-norm", type=float, default=0.5, | ||
help="the maximum norm for the gradient clipping") | ||
parser.add_argument("--target-kl", type=float, default=None, | ||
help="the target KL divergence threshold") | ||
args = parser.parse_args() | ||
args.batch_size = int(args.num_envs * args.num_steps) | ||
args.minibatch_size = int(args.batch_size // args.num_minibatches) | ||
# fmt: on | ||
return args | ||
|
||
|
||
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): | ||
torch.nn.init.orthogonal_(layer.weight, std) | ||
torch.nn.init.constant_(layer.bias, bias_const) | ||
return layer | ||
|
||
|
||
class Agent(nn.Module): | ||
def __init__(self, envs): | ||
super().__init__() | ||
self.network = nn.Sequential( | ||
layer_init(nn.Conv2d(6, 32, 8, stride=4)), | ||
nn.ReLU(), | ||
layer_init(nn.Conv2d(32, 64, 4, stride=2)), | ||
nn.ReLU(), | ||
layer_init(nn.Conv2d(64, 64, 3, stride=1)), | ||
nn.ReLU(), | ||
nn.Flatten(), | ||
layer_init(nn.Linear(64 * 7 * 7, 512)), | ||
nn.ReLU(), | ||
) | ||
self.actor = layer_init(nn.Linear(512, envs.single_action_space.n), std=0.01) | ||
self.critic = layer_init(nn.Linear(512, 1), std=1) | ||
|
||
def get_value(self, x): | ||
x = x.clone() | ||
x[:, :, :, [0, 1, 2, 3]] /= 255.0 | ||
return self.critic(self.network(x.permute((0, 3, 1, 2)))) | ||
|
||
def get_action_and_value(self, x, action=None): | ||
x = x.clone() | ||
x[:, :, :, [0, 1, 2, 3]] /= 255.0 | ||
hidden = self.network(x.permute((0, 3, 1, 2))) | ||
logits = self.actor(hidden) | ||
probs = Categorical(logits=logits) | ||
if action is None: | ||
action = probs.sample() | ||
return action, probs.log_prob(action), probs.entropy(), self.critic(hidden) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" | ||
if args.track: | ||
import wandb | ||
|
||
wandb.init( | ||
project=args.wandb_project_name, | ||
entity=args.wandb_entity, | ||
sync_tensorboard=True, | ||
config=vars(args), | ||
name=run_name, | ||
monitor_gym=True, | ||
save_code=True, | ||
) | ||
writer = SummaryWriter(f"runs/{run_name}") | ||
writer.add_text( | ||
"hyperparameters", | ||
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), | ||
) | ||
|
||
# TRY NOT TO MODIFY: seeding | ||
random.seed(args.seed) | ||
np.random.seed(args.seed) | ||
torch.manual_seed(args.seed) | ||
torch.backends.cudnn.deterministic = args.torch_deterministic | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") | ||
|
||
# env setup | ||
env = importlib.import_module(f"pettingzoo.atari.{args.env_id}").parallel_env() | ||
env = ss.max_observation_v0(env, 2) | ||
env = ss.frame_skip_v0(env, 4) | ||
env = ss.clip_reward_v0(env, lower_bound=-1, upper_bound=1) | ||
env = ss.color_reduction_v0(env, mode="B") | ||
env = ss.resize_v1(env, x_size=84, y_size=84) | ||
env = ss.frame_stack_v1(env, 4) | ||
env = ss.agent_indicator_v0(env, type_only=False) | ||
env = ss.pettingzoo_env_to_vec_env_v1(env) | ||
envs = ss.concat_vec_envs_v1(env, args.num_envs // 2, num_cpus=0, base_class="gym") | ||
envs.single_observation_space = envs.observation_space | ||
envs.single_action_space = envs.action_space | ||
envs.is_vector_env = True | ||
envs = gym.wrappers.RecordEpisodeStatistics(envs) | ||
if args.capture_video: | ||
envs = gym.wrappers.RecordVideo(envs, f"videos/{run_name}") | ||
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported" | ||
|
||
agent = Agent(envs).to(device) | ||
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) | ||
|
||
# ALGO Logic: Storage setup | ||
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) | ||
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) | ||
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) | ||
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) | ||
dones = torch.zeros((args.num_steps, args.num_envs)).to(device) | ||
values = torch.zeros((args.num_steps, args.num_envs)).to(device) | ||
|
||
# TRY NOT TO MODIFY: start the game | ||
global_step = 0 | ||
start_time = time.time() | ||
next_obs = torch.Tensor(envs.reset()).to(device) | ||
next_done = torch.zeros(args.num_envs).to(device) | ||
num_updates = args.total_timesteps // args.batch_size | ||
|
||
for update in range(1, num_updates + 1): | ||
# Annealing the rate if instructed to do so. | ||
if args.anneal_lr: | ||
frac = 1.0 - (update - 1.0) / num_updates | ||
lrnow = frac * args.learning_rate | ||
optimizer.param_groups[0]["lr"] = lrnow | ||
|
||
for step in range(0, args.num_steps): | ||
global_step += 1 * args.num_envs | ||
obs[step] = next_obs | ||
dones[step] = next_done | ||
|
||
# ALGO LOGIC: action logic | ||
with torch.no_grad(): | ||
action, logprob, _, value = agent.get_action_and_value(next_obs) | ||
values[step] = value.flatten() | ||
actions[step] = action | ||
logprobs[step] = logprob | ||
|
||
# TRY NOT TO MODIFY: execute the game and log data. | ||
next_obs, reward, done, info = envs.step(action.cpu().numpy()) | ||
rewards[step] = torch.tensor(reward).to(device).view(-1) | ||
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device) | ||
|
||
for idx, item in enumerate(info): | ||
player_idx = idx % 2 | ||
if "episode" in item.keys(): | ||
print(f"global_step={global_step}, {player_idx}-episodic_return={item['episode']['r']}") | ||
writer.add_scalar(f"charts/episodic_return-player{player_idx}", item["episode"]["r"], global_step) | ||
writer.add_scalar(f"charts/episodic_length-player{player_idx}", item["episode"]["l"], global_step) | ||
|
||
# bootstrap value if not done | ||
with torch.no_grad(): | ||
next_value = agent.get_value(next_obs).reshape(1, -1) | ||
if args.gae: | ||
advantages = torch.zeros_like(rewards).to(device) | ||
lastgaelam = 0 | ||
for t in reversed(range(args.num_steps)): | ||
if t == args.num_steps - 1: | ||
nextnonterminal = 1.0 - next_done | ||
nextvalues = next_value | ||
else: | ||
nextnonterminal = 1.0 - dones[t + 1] | ||
nextvalues = values[t + 1] | ||
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] | ||
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam | ||
returns = advantages + values | ||
else: | ||
returns = torch.zeros_like(rewards).to(device) | ||
for t in reversed(range(args.num_steps)): | ||
if t == args.num_steps - 1: | ||
nextnonterminal = 1.0 - next_done | ||
next_return = next_value | ||
else: | ||
nextnonterminal = 1.0 - dones[t + 1] | ||
next_return = returns[t + 1] | ||
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return | ||
advantages = returns - values | ||
|
||
# flatten the batch | ||
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) | ||
b_logprobs = logprobs.reshape(-1) | ||
b_actions = actions.reshape((-1,) + envs.single_action_space.shape) | ||
b_advantages = advantages.reshape(-1) | ||
b_returns = returns.reshape(-1) | ||
b_values = values.reshape(-1) | ||
|
||
# Optimizing the policy and value network | ||
b_inds = np.arange(args.batch_size) | ||
clipfracs = [] | ||
for epoch in range(args.update_epochs): | ||
np.random.shuffle(b_inds) | ||
for start in range(0, args.batch_size, args.minibatch_size): | ||
end = start + args.minibatch_size | ||
mb_inds = b_inds[start:end] | ||
|
||
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds]) | ||
logratio = newlogprob - b_logprobs[mb_inds] | ||
ratio = logratio.exp() | ||
|
||
with torch.no_grad(): | ||
# calculate approx_kl http://joschu.net/blog/kl-approx.html | ||
old_approx_kl = (-logratio).mean() | ||
approx_kl = ((ratio - 1) - logratio).mean() | ||
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()] | ||
|
||
mb_advantages = b_advantages[mb_inds] | ||
if args.norm_adv: | ||
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8) | ||
|
||
# Policy loss | ||
pg_loss1 = -mb_advantages * ratio | ||
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef) | ||
pg_loss = torch.max(pg_loss1, pg_loss2).mean() | ||
|
||
# Value loss | ||
newvalue = newvalue.view(-1) | ||
if args.clip_vloss: | ||
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 | ||
v_clipped = b_values[mb_inds] + torch.clamp( | ||
newvalue - b_values[mb_inds], | ||
-args.clip_coef, | ||
args.clip_coef, | ||
) | ||
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 | ||
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) | ||
v_loss = 0.5 * v_loss_max.mean() | ||
else: | ||
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean() | ||
|
||
entropy_loss = entropy.mean() | ||
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) | ||
optimizer.step() | ||
|
||
if args.target_kl is not None: | ||
if approx_kl > args.target_kl: | ||
break | ||
|
||
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() | ||
var_y = np.var(y_true) | ||
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y | ||
|
||
# TRY NOT TO MODIFY: record rewards for plotting purposes | ||
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) | ||
writer.add_scalar("losses/value_loss", v_loss.item(), global_step) | ||
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) | ||
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) | ||
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step) | ||
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) | ||
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) | ||
writer.add_scalar("losses/explained_variance", explained_var, global_step) | ||
print("SPS:", int(global_step / (time.time() - start_time))) | ||
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) | ||
|
||
envs.close() | ||
writer.close() |
Oops, something went wrong.