forked from datawhalechina/pumpkin-book
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
## 13.1 | ||
|
||
@(机器学习笔记) | ||
|
||
$$p(\boldsymbol{x})=\sum_{i=1}^{N} \alpha_{i} \cdot p\left(\boldsymbol{x} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)$$ | ||
[解析]: 该式即为 9.4.3 节的式(9.29),式(9.29)中的$k$个混合成分对应于此处的$N$个可能的类别 | ||
|
||
## 13.2 | ||
$$ | ||
\begin{aligned} f(\boldsymbol{x}) &=\underset{j \in \mathcal{Y}}{\arg \max } p(y=j | \boldsymbol{x}) \\ &=\underset{j \in \mathcal{Y}}{\arg \max } \sum_{i=1}^{N} p(y=j, \Theta=i | \boldsymbol{x}) \\ &=\underset{j \in \mathcal{Y}}{\arg \max } \sum_{i=1}^{N} p(y=j | \Theta=i, \boldsymbol{x}) \cdot p(\Theta=i | \boldsymbol{x}) \end{aligned} | ||
$$ | ||
[解析]: | ||
首先,该式的变量$\theta \in \{1,2,...,N\}$即为 9.4.3 节的式(9.30)中的 $\ z_j\in\{1,2,...k\}$ | ||
从公式第 1 行到第 2 行是做了边际化(marginalization);具体来说第 2 行比第 1 行多了$\theta$为了消掉$\theta$对其进行求和(若是连续变量则为积分)$\sum_{i=1}^N$ | ||
[推导]:从公式第 2 行到第 3 行推导如下 | ||
$$\begin{aligned} p(y = j,\theta = i \vert x) &= \cfrac {p(y=j, \theta=i,x)} {p(x)} \\ | ||
&=\cfrac{p(y=j ,\theta=i,x)}{p(\theta=i,x)}\cdot \cfrac{p(\theta=i,x)}{p(x)} \\ | ||
&=p(y=j\vert \theta=i,x)\cdot p(\theta=i\vert x)\end{aligned}$$ | ||
[解析]: | ||
其中$p(y=j\vert x)$表示$x$的类别$y$为第$j$个类别标记的后验概率(注意条件是已知$x$); | ||
$p(y=j,\theta=i\vert x)$表示$x$的类别$y$为第$j$个类别标记且由第$i$个高斯混合成分生成的后验概率(注意条件是已知$x$ ); | ||
$p(y=j,\theta=i,x)$表示第$i$个高斯混合成分生成的$x$其类别$y$为第$j$个类别标记的概率(注意条件是已知$\theta$和$x$,这里修改了西瓜书式(13.3)下方对$p(y=j\vert\theta=i,x)$的表述; | ||
$p(\theta=i \vert x)$表示$x$由第$i$个高斯混合成分生成的后验概率(注意条件是已知$x$); | ||
西瓜书第 296 页第 2 行提到“假设样本由高斯混合模型生成,且每个类别对应一个高斯混合成分”,也就是说,如果已知$x$是由哪个高斯混合成分生成的,也就知道了其类别。而$p(y=j,\theta=i\vert x)$表示已知$\theta$和$x$ 的条件概率(其实已知$\theta$就足够,不需$x$的信息),因此 | ||
$$p(y=j\vert \theta=i,x)= | ||
\begin{cases} | ||
1,&i=j \\ | ||
0,&i\not=j | ||
\end{cases}$$ | ||
##13.3 | ||
$$ | ||
p(\Theta=i | \boldsymbol{x})=\frac{\alpha_{i} \cdot p\left(\boldsymbol{x} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)}{\sum_{i=1}^{N} \alpha_{i} \cdot p\left(\boldsymbol{x} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)} | ||
$$ | ||
[解析]:该式即为 9.4.3 节的式(9.30),具体推导参见有关式(9.30)的解释。 | ||
##13.4 | ||
$$ | ||
\begin{aligned} L L\left(D_{l} \cup D_{u}\right)=& \sum_{\left(x_{j}, y_{j}\right) \in D_{l}} \ln \left(\sum_{i=1}^{N} \alpha_{i} \cdot p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right) \cdot p\left(y_{j} | \Theta=i, \boldsymbol{x}_{j}\right)\right) \\ &+\sum_{x_{j} \in D_{u}} \ln \left(\sum_{i=1}^{N} \alpha_{i} \cdot p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)\right) \end{aligned} | ||
$$ | ||
[解析]:由式(13.2)对概率$p(y=j\vert\theta =i,x)=$的分析,式中第 1 项中的$p(y_j\vert\theta =i,x_j)$ 为 | ||
$$p(y_j\vert \theta=i,x_j)= | ||
\begin{cases} | ||
1,&y_i=i \\ | ||
0,&y_i\not=i | ||
\end{cases}$$ | ||
该式第 1 项针对有标记样本$(x_i,y_i) \in D_i$来说,因为有标记样本的类别是确定的,因此在计算它的对数似然时,它只可能来自$N$个高斯混合成分中的一个(西瓜书第 296 页第 2 行提到“假设样本由高斯混合模型生成,且每个类别对应一个高斯混合成分”),所以计算第 1 项计算有标记样本似然时乘以了$p(y_j\vert\theta =i,x_j)$ ; | ||
该式第 2 项针对未标记样本$x_j\in D_u$;来说的,因为未标记样本的类别不确定,即它可能来自$N$个高斯混合成分中的任何一个,所以第 1 项使用了式(13.1)。 | ||
##13.5 | ||
$$ | ||
\gamma_{j i}=\frac{\alpha_{i} \cdot p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)}{\sum_{i=1}^{N} \alpha_{i} \cdot p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)} | ||
$$ | ||
[解析]:该式与式(13.3)相同,即后验概率。 可通过有标记数据对模型参数$(\alpha_i,\mu_i,\Sigma_i)$进行初始化,具体来说: | ||
$$\alpha_i = \cfrac{l_i}{|D_l|},where |D_l| = \sum_{i=1}^N l_i$$ | ||
$$\mu_i = \cfrac{1}{l_i}\sum_{(x_j,y_j) \in D_l\wedge y_i=i}(x_j-\mu_j)(x_j-\mu_j)^T$$ | ||
$$ | ||
\Sigma_{i}=\frac{1}{l_{i}} \sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left( x_{j}- \mu_{i}\right)\left( x_{j}-\mu_{i}\right)^{\top} | ||
$$ | ||
其中$l_i$表示第$i$类样本的有标记样本数目,$|D_l|$为有标记样本集样本总数,$\wedge$为“逻辑与”。 | ||
##13.6 | ||
$$ | ||
\boldsymbol{\mu}_{i}=\frac{1}{\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i}+l_{i}}\left(\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \boldsymbol{x}_{j}+\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} \boldsymbol{x}_{j}\right) | ||
$$ | ||
[推导]:类似于式(9.34)该式由$\cfrac{\partial LL(D_l \cup D_u) }{\partial \mu_i}=0$而得,将式(13.4)的两项分别记为: | ||
$$LL(D_l)=\sum_{(x_j,y_j \in D_l)}ln(\sum_{s=1}^{N}\alpha_s \cdot p(x_j \vert \mu_s,\Sigma_s) \cdot p(y_i|\theta = s,x_j)$$ | ||
$$LL(D_u)=\sum_{x_j \in D_u} ln(\sum_{s=1}^N \alpha_s \cdot p(x_j | \mu_s,\Sigma_s))$$ | ||
对于式(13.4)中的第 1 项$LL(D_l)$,由于$p(y_j\vert \theta=i,x_j)$取值非1即0(详见13.2,13.4分析),因此 | ||
$$LL(D_l)=\sum_{(x_j,y_j)\in D_l} ln(\alpha_{y_j} \cdot p(x_j|\mu_{y_j}, \Sigma_{y_j}))$$ | ||
若求$LL(D_l)$对$\mu_i$的偏导,则$LL(D_l)$求和号中只有$y_j=i$ 的项能留下来,即 | ||
|
||
$$\begin{aligned} | ||
\cfrac{\partial LL(D_l) }{\partial \mu_i} &= | ||
\sum_{(x_i,y_i)\in D_l \wedge y_j=i} \cfrac{\partial ln(\alpha_i \cdot p(x_j| \mu_i,\Sigma_i))}{\partial\mu_i}\\ | ||
&=\sum_{(x_i,y_i)\in D_l \wedge y_j=i}\cfrac{1}{p(x_j|\mu_i,\Sigma_i) }\cdot \cfrac{\partial p(x_j|\mu_i,\Sigma_i)}{\partial\mu_i}\\ | ||
&=\sum_{(x_i,y_i)\in D_l \wedge y_j=i}\cfrac{1}{p(x_j|\mu_i,\Sigma_i) }\cdot p(x_j|\mu_i,\Sigma_i) \cdot \Sigma_i^{-1}(x_j-\mu_i)\\ | ||
&=\sum_{x_j \in D_u } \Sigma_i^{-1}(x_j-\mu_i) | ||
\end{aligned}$$ | ||
|
||
对于式(13.4)中的第 2 项$LL(D_u)$,求导结果与式(9.33)的推导过程一样 | ||
$$\cfrac{\partial LL(D_l \cup D_u) }{\partial \mu_i}=\sum_{x_j \in {D_u}} \cfrac{\alpha_i}{\sum_{s=1}^N \alpha_s \cdotp(x_j|\mu_s,\Sigma_s)} \cdot p(x_j|\mu_i,\Sigma_i )\cdot \Sigma_i^{-1}(x_j-\mu_i)$$ | ||
$$=\sum_{x_j \in D_u }\gamma_{ji} \cdot \Sigma_i^{-1}(x_j-\mu_i)$$ | ||
综合两项结果,则$\cfrac{\partial LL(D_l \cup D_u) }{\partial \mu_i}$为 | ||
$$ | ||
\begin{aligned} \frac{\partial L L\left(D_{l} \cup D_{u}\right)}{\partial \mu_{i}} &=\sum_{\left(x_{j}, y_{j}\right) \in D_{t} \wedge y_{j}=i} \Sigma_{i}^{-1}\left(x_{j}-\mu_{i}\right)+\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot \Sigma_{i}^{-1}\left(x_{j}-\mu_{i}\right) \\ &=\Sigma_{i}^{-1}\left(\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left(x_{j}-\mu_{i}\right)+\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot\left(x_{j}-\mu_{i}\right)\right) \\ &=\Sigma_{i}^{-1}\left(\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} x_{j}+\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot x_{j}-\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} \mu_{i}-\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot \mu_{i}\right) \end{aligned} | ||
$$ | ||
令$\frac{\partial L L\left(D_{l} \cup D_{u}\right)}{\partial \boldsymbol{\mu}_{i}}=0$,两边同时左乘$\Sigma_i$可将$\Sigma_i^{-1}$消掉,移项即得 | ||
$$ | ||
\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot \mu_{i}+\sum_{\left(x_{j}, y_{j}\right) \in D_{t} \wedge y_{j}=i} \mu_{i}=\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot x_{j}+\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} x_{j} | ||
$$ | ||
上式中, 可以作为常量提到求和号外面,而$\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} 1=l_{i}$,即第 类样本的有标记 样本数目,因此 | ||
$$ | ||
\left(\sum_{x_{j} \in D_{u}} \gamma_{j i}+\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \backslash y_{j}=i} 1\right) \mu_{i}=\sum_{x_{j} \in D_{u}} \gamma_{j i} \cdot x_{j}+\sum_{\left(x_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} x_{j} | ||
$$ | ||
即得式(13.6); | ||
##13.7 | ||
$$ | ||
\begin{aligned} \boldsymbol{\Sigma}_{i}=& \frac{1}{\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i}+l_{i}}\left(\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\mathrm{T}}\right.\\+& \sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\mathrm{T}} ) \end{aligned} | ||
$$ | ||
[推导]:类似于13.6 由$\cfrac{\partial LL(D_l \cup D_u) }{\partial \Sigma_i}=0$得,化简过程同13.6过程类似 | ||
对于式(13.4)中的第 1 项$LL(D_l)$ ,类似于刚才式(13.6)的推导过程; | ||
$$ | ||
\begin{aligned} \frac{\partial L L\left(D_{l}\right)}{\partial \boldsymbol{\Sigma}_{i}} &=\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} \frac{\partial \ln \left(\alpha_{i} \cdot p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)\right)}{\partial \boldsymbol{\Sigma}_{i}} \\ &=\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} \frac{1}{p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)} \cdot \frac{\partial p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)}{\partial \boldsymbol{\Sigma}_{i}} \\ | ||
&=\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} \frac{1}{p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \mathbf{\Sigma}_{i}\right)} \cdot p\left(\boldsymbol{x}_{j} | \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right) \cdot\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right) \cdot \frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1}\\ | ||
&=\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left(\mathbf{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right) \cdot \frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} | ||
\end{aligned} | ||
$$ | ||
对于式(13.4)中的第 2 项$LL(D_u)$ ,求导结果与式(9.35)的推导过程一样; | ||
$$ | ||
\frac{\partial L L\left(D_{u}\right)}{\partial \boldsymbol{\Sigma}_{i}}=\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \cdot\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right) \cdot \frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} | ||
$$ | ||
综合两项结果,则$\cfrac{\partial LL(D_l \cup D_u) }{\partial \Sigma_i}$为 | ||
$$\begin{aligned} \frac{\partial L L\left(D_{l} \cup D_{u}\right)}{\partial \boldsymbol{\mu}_{i}}=& \sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \cdot\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right) \cdot \frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} \\ &+\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right) \cdot \frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} \\ | ||
&=\left(\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \cdot\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right)\right.\\ &+\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left(\boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}-\boldsymbol{I}\right) ) \cdot \frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1} | ||
\end{aligned} | ||
$$ | ||
令$\frac{\partial L L\left(D_{l} \cup D_{u}\right)}{\partial \boldsymbol{\Sigma}_{i}}=0$,两边同时右乘$2\Sigma_i$可将 $\cfrac{1}{2}\Sigma_i^{-1}$消掉,移项即得 | ||
$$ | ||
\begin{aligned} \sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \cdot \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}+& \sum_{\left(\boldsymbol{x}_{j}, y_{j} \in D_{l} \wedge y_{j}=i\right.} \boldsymbol{\Sigma}_{i}^{-1}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top} \\=& \sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \cdot \boldsymbol{I}+\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i} \boldsymbol{I} \\ &=\left(\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i}+l_{i}\right) \boldsymbol{I} \end{aligned} | ||
$$ | ||
两边同时左乘以$\Sigma_i$,上式变为 | ||
$$ | ||
\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i} \cdot\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}+\sum_{\left(\boldsymbol{x}_{j}, y_{j}\right) \in D_{l} \wedge y_{j}=i}\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\boldsymbol{x}_{j}-\boldsymbol{\mu}_{i}\right)^{\top}=\left(\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i}+l_{i}\right) \boldsymbol{\Sigma}_{i} | ||
$$ | ||
即得式(13.7); | ||
##13.8 | ||
$$ | ||
\alpha_{i}=\frac{1}{m}\left(\sum_{\boldsymbol{x}_{j} \in D_{u}} \gamma_{j i}+l_{i}\right) | ||
$$ | ||
[推导]:类似于式(9.36),写出$LL(D_l \cup D_u)$的拉格朗日形式 | ||
$$\begin{aligned} | ||
\mathcal{L}(D_l \cup D_u,\lambda) &= LL(D_l \cup D_u)+\lambda(\sum_{s=1}^N \alpha_s -1)\\ | ||
& =LL(D_l)+LL(D_u)+\lambda(\sum_{s=1}^N \alpha_s - 1)\\ | ||
\end{aligned}$$ | ||
类似于式(9.37),对$\alpha_i$求偏导。对于LL(D_u),求导结果与式(9.37)的推导过程一样: | ||
$$\cfrac{\partial LL(D_u)}{\partial\alpha_i} = \sum_{x_j \in D_u} \cfrac{1}{\Sigma_{s=1}^N \alpha_s \cdot p(x_j|\mu_s,\Sigma_s)} \cdot p(x_j|\mu_i,\Sigma_i)$$ | ||
对于$LL(D_l)$,类似于类似于(13.6)和(13.7)的推导过程 | ||
$$\begin{aligned} | ||
\cfrac{\partial LL(D_l)}{\partial\alpha_i} &= \sum_{(x_i,y_i)\in D_l \wedge y_j=i} \cfrac{\partial ln(\alpha_i \cdot p(x_j| \mu_i,\Sigma_i))}{\partial\alpha_i}\\ | ||
&=\sum_{(x_i,y_i)\in D_l \wedge y_j=i}\cfrac{1}{ \alpha_i \cdot p(x_j|\mu_i,\Sigma_i) }\cdot \cfrac{\partial (\alpha_i \cdot p(x_j|\mu_i,\Sigma_i))}{\partial \alpha_i}\\ | ||
&=\sum_{(x_i,y_i)\in D_l \wedge y_j=i}\cfrac{1}{\alpha_i \cdot p(x_j|\mu_i,\Sigma_i) }\cdot p(x_j|\mu_i,\Sigma_i) \\ | ||
&=\cfrac{1}{\alpha_i} \cdot \sum_{(x_i,y_i)\in D_l \wedge y_j=i} 1 \\ | ||
&=\cfrac{l_i}{\alpha_i} | ||
\end{aligned}$$ | ||
上式推导过程中,重点注意变量是$\alpha_i$ ,$p(x_j|\mu_i,\Sigma_i)$是常量;最后一行$\alpha_i$相对于求和变量为常量,因此作为公因子提到求和号外面; 为第$i$类样本的有标记样本数目。 | ||
综合两项结果,则$\cfrac{\partial LL(D_l \cup D_u) }{\partial \alpha_i}$为 | ||
$$\cfrac{\partial LL(D_l \cup D_u) }{\partial \mu_i} = \cfrac{l_i}{\alpha_i} + \sum_{x_j \in D_u} \cfrac{p(x_j|\mu_i,\Sigma_i)}{\Sigma_{s=1}^N \alpha_s \cdot p(x_j| \mu_s, \Sigma_s)}+\lambda$$ | ||
令$\cfrac{\partial LL(D_l \cup D_u) }{\partial \alpha_i}=0$并且两边同乘以$\alpha_i$,得 | ||
$$ \alpha_i \cdot \cfrac{l_i}{\alpha_i} + \sum_{x_j \in D_u} \cfrac{\alpha_i \cdot p(x_j|\mu_i,\Sigma_i)}{\Sigma_{s=1}^N \alpha_s \cdot p(x_j| \mu_s, \Sigma_s)}+\lambda \cdot \alpha_i=0$$ | ||
结合式(9.30)发现,求和号内即为后验概率$\gamma_{ji}$,即 | ||
$$l_i+\sum_{x_i \in D_u} \gamma_{ji}+\lambda \alpha_i = 0$$ | ||
对所有混合成分求和,得 | ||
$$\sum_{i=1}^N l_i+\sum_{i=1}^N \sum_{x_i \in D_u} \gamma_{ji}+\sum_{i=1}^N \lambda \alpha_i = 0$$ | ||
这里$\Sigma_{i=1}^N \alpha_i =1$ ,因此$\sum_{i=1}^N \lambda \alpha_i=\lambda\sum_{i=1}^N \alpha_i=\lambda$ | ||
根据(9.30)中$\gamma_{ji}$表达式可知 | ||
$$\sum_{i=1}^N \gamma_{ji} = \sum_{i =1}^{N} \cfrac{\alpha_i \cdot p(x_j|\mu_i,\Sigma_i)}{\Sigma_{s=1}^N \alpha_s \cdot p(x_j| \mu_s, \Sigma_s)}= \cfrac{\sum_{i =1}^{N}\alpha_i \cdot p(x_j|\mu_i,\Sigma_i)}{\sum_{s=1}^N \alpha_s \cdot p(x_j| \mu_s, \Sigma_s)}=1$$ | ||
再结合加法满足交换律,所以 | ||
$$\sum_{i=1}^N \sum_{x_i \in D_u} \gamma_{ji}=\sum_{x_i \in D_u} \sum_{i=1}^N \gamma_{ji} =\sum_{x_i \in D_u} 1=u$$ | ||
以上分析过程中,$\sum_{x_j\in D_u}$ 形式与$\sum_{j=1}^u$等价,其中u为未标记样本集的样本个数; $\sum_{i=1}^Nl_i=l$其中$l$为有标记样本集的样本个数;将这些结果代入 | ||
$$\sum_{i=1}^N l_i+\sum_{i=1}^N \sum_{x_i \in D_u} \gamma_{ji}+\sum_{i=1}^N \lambda \alpha_i = 0$$ | ||
解出$l+u+\lambda = 0$ 且$l+u =m$ 其中$m$为样本总个数,移项即得$\lambda = -m$ | ||
最后带入整理解得 | ||
$$l_i + \Sigma_{X_j \in{D_u}} \gamma_{ji}-m \alpha_i = 0$$ | ||
整理即得式(13.8); | ||
|
||
|