Skip to content

Commit

Permalink
Merge pull request datawhalechina#11 from Ye980226/master
Browse files Browse the repository at this point in the history
其他尽快补上
  • Loading branch information
Sm1les authored Apr 5, 2019
2 parents 17638fd + c85d892 commit 4218dbe
Showing 1 changed file with 26 additions and 0 deletions.
26 changes: 26 additions & 0 deletions docs/chapter8/chapter8.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
## 8.3
$$
\begin{aligned} P(H(\boldsymbol{x}) \neq f(\boldsymbol{x})) &=\sum_{k=0}^{\lfloor T / 2\rfloor} \left( \begin{array}{c}{T} \\ {k}\end{array}\right)(1-\epsilon)^{k} \epsilon^{T-k} \\ & \leqslant \exp \left(-\frac{1}{2} T(1-2 \epsilon)^{2}\right) \end{aligned}
$$

$$
\begin{aligned} P(H(x) \neq f(x))=& P(x \leq\lfloor T / 2\rfloor) \\ & \leqslant P(x \leq T / 2) \end{aligned}
$$

Hoeffding's inequality
$$
\mathrm{P}(H(n) \leq(p-\varepsilon) n) \leq \exp \left(-2 \varepsilon^{2} n\right)
$$
$\newline$

$$
\begin{aligned} & P\left(x \leq \frac{T}{2}\right) \\=& P\left[x-(1-\varepsilon) T \leqslant \frac{T}{2}-(1-\varepsilon) T\right]
\\=&
P\left[x-
(1-\varepsilon) T \leqslant -\frac{1}{2}T\left(1-2\varepsilon\right)]\right.
\end{aligned}
$$
根据Hoeffding's inequality
$$
\begin{aligned} P(H(\boldsymbol{x}) \neq f(\boldsymbol{x})) &=\sum_{k=0}^{\lfloor T / 2\rfloor} \left( \begin{array}{c}{T} \\ {k}\end{array}\right)(1-\epsilon)^{k} \epsilon^{T-k} \\ & \leqslant \exp \left(-\frac{1}{2} T(1-2 \epsilon)^{2}\right) \end{aligned}
$$

0 comments on commit 4218dbe

Please sign in to comment.