Skip to content

LeoFu9487/ModelPulse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

4 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿง  ModelPulse โ€” Stay Up to Date with the Fast-Moving World of LLMs

ModelPulse, A local, GPU-accelerated retrieval-augmented AI system to track the latest in LLM research.

Python Docker GPU Streamlit License: MIT Status arXiv HuggingFace


ModelPulse is an open-source, GPU-accelerated retrieval-augmented system that helps developers and researchers stay up to date with the fast-moving world of LLMs โ€” tracking new research, model releases, and blogs. Everything runs fully locally with Hugging Face models โ€” no API calls required (optional: enable RAGAS evaluation with OpenAI API key).


๐Ÿ“‘ Table of Contents


๐Ÿงญ Overview

LLM research moves fast โ€” new architectures, RAG techniques, and benchmarks appear weekly. ModelPulse acts as your personal AI radar, automatically:

  • ๐Ÿ“ฐ Collects updates from trusted sources like OpenAI, Anthropic, Hugging Face, and arXiv
  • ๐Ÿ” Builds semantic search indexes for Q&A
  • ๐Ÿง  Generates summaries and digests with citations
  • ๐Ÿ“Š Tracks faithfulness, latency, and cost metrics
  • โš™๏ธ Adapts over time using feedback and metrics

Demo

Search

Search Demo

Perform semantic searches across the latest LLM research and documentation


Ask Questions with Citations

Ask Demo

Ask questions and get grounded answers with source citations


Generate Research Digests

Digest Demo

Automatically generate summaries and digests from retrieved content


โœจ Features

๐Ÿš€ Feature Description
๐Ÿงฉ Hybrid Retrieval Combines BM25 + FAISS vector search for optimal precision and recall
๐Ÿง  Grounded Summarization Answers are cited and based on retrieved evidence
โš™๏ธ Fully Local Works offline with GPU inference โ€” no API required
๐Ÿ“Š Evaluation Dashboard Visual metrics: latency, quality, and cost (optional with API key)
๐Ÿงฎ Adaptive Tuning Learns retrieval parameters automatically (optional with API key)
๐Ÿ“ฌ Topic Watchlists Alerts you when new papers appear on your topics

๐Ÿงฐ Tech Stack

๐Ÿ’ก Layer ๐Ÿ”ง Tools & Libraries
Ingestion feedparser, beautifulsoup4, trafilatura
Embeddings sentence-transformers, BAAI/bge-base-en-v1.5, intfloat/e5-base-v2
Retrieval faiss-gpu, rank_bm25, cross-encoder/ms-marco-MiniLM-L-6-v2
Generation Local LLMs (Qwen2.5-7B, Mistral-7B, Llama-3.1-8B)
Evaluation ragas, scikit-learn, matplotlib
UI / Backend Streamlit, FastAPI, SQLite
Deployment Docker, docker-compose, NVIDIA GPU

๐Ÿ–ฅ๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Connectors     โ”‚  โ† RSS, Blogs, arXiv, APIs
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Indexing Layer   โ”‚  โ† Chunking + Embeddings (BGE/E5)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Retrieval Layer  โ”‚  โ† BM25 + FAISS + Cross-Encoder
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Generation Layer โ”‚  โ† Local LLMs (Qwen/Mistral/Llama)
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Evaluation Layer โ”‚  โ† RAGAS + latency + cost tracking
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
        โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Streamlit UI    โ”‚  โ† Dashboard + QA + Digests
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿš€ Quick Start (Docker Recommended)

# 1. Install NVIDIA Container Toolkit
./install_nvidia_docker.sh

# 2. (Optional) Configure OpenAI API key for RAGAS evaluation & adaptive tuning
# Skip this step for fully local operation without evaluation metrics
cp .env.example .env
nano .env
# Add your key: OPENAI_API_KEY=sk-proj-your-key

# 3. Start ModelPulse
./start.sh

# 4. Visit the dashboard
# โ†’ http://localhost:8501

๐Ÿ• First run: 15โ€“30 min (downloads models and builds index). Next runs: ~30 sec (just launches the UI).

Note: Without OPENAI_API_KEY, ModelPulse runs 100% locally โ€” ingestion, search, Q&A, and UI all work offline. The API key is only needed for RAGAS evaluation metrics and adaptive config tuning.


๐Ÿงช Manual Setup (Python)

git clone https://github.com/LeoFu9487/ModelPulse.git
cd ModelPulse
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

# Ingest and index data
python3 -m jobs.ingest_daily
python3 -m pipeline.chunk
python3 -m pipeline.embed

# Launch dashboard
python3 -m streamlit run ui/app_streamlit.py

๐Ÿ’ก Example Queries

Q: Whatโ€™s new in RAG evaluation this week?

A: A new metric called โ€œcontext coherenceโ€ was introduced by Hugging Face [1],
   improving precision for long-form retrieval tasks [2].

Sources:
[1] https://huggingface.co/blog/ragas-update
[2] https://arxiv.org/abs/2401.01234

๐Ÿ“Š Evaluation Metrics

Metric Description Requires API Key
Faithfulness Alignment between generated answer and sources Yes (RAGAS)
Answer Relevancy Semantic relevance of generated answers Yes (RAGAS)
Precision / Recall Context retrieval accuracy Yes (RAGAS)
Latency Response time per query No (local)
Cost GPU compute cost per evaluation No (local)
Confidence Weighted similarity of top-k retrieved chunks No (local)

Note: RAGAS-based metrics (faithfulness, relevancy, precision, recall) require OPENAI_API_KEY. All other features including latency tracking and the Streamlit dashboard work fully locally.


๐Ÿ“ฆ Repository Structure

modelpulse/
โ”œโ”€โ”€ connectors/        # Data sources
โ”œโ”€โ”€ pipeline/          # Chunking & embedding
โ”œโ”€โ”€ retriever/         # Hybrid + reranking logic
โ”œโ”€โ”€ rag/               # Q&A and evaluation
โ”œโ”€โ”€ ui/                # Streamlit app
โ”œโ”€โ”€ jobs/              # Ingestion & digest tasks
โ”œโ”€โ”€ storage/           # SQLite data
โ””โ”€โ”€ Dockerfile

โš™๏ธ Configuration

config.yaml example:

embeddings:
  model: BAAI/bge-base-en-v1.5
retrieval:
  top_k: 8
  alpha_bm25: 0.5
generator:
  model: Qwen/Qwen2.5-7B-Instruct
  quantization_4bit: true
  temperature: 0.0

Restart after changes:

docker compose down && ./start.sh

๐Ÿงญ Roadmap

  • Active Learning Loop โ€” feedback-based retrieval tuning
  • Retrieval Compression Benchmark โ€” dense vs sparse
  • Fine-Tuned Domain Embeddings
  • Multimodal Support (CLIP)
  • Personalized Watchlists

๐Ÿงพ License

MIT License ยฉ 2025 Yu-Peng FU


๐Ÿ™Œ Acknowledgments

Thanks to the open-source community:


๐ŸŒ ModelPulse keeps you informed, grounded, and in sync with the latest in AI.