Skip to content

Learning-group123/CAiDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 

Repository files navigation

PyTorch Implementation for CAiDA

This is the implementation code of our paper "Confident Anchor-Induced Multi-Source Free Domain Adaptation" accepted by NeurIPS-2021.

Overview of The CAiDA Model

overview

Requirements:

  • python == 3.6.8
  • pytorch == 1.1.0
  • numpy == 1.17.4
  • torchvision == 0.3.0
  • scipy == 1.3.1
  • sklearn == 0.5.0
  • argparse, PIL

Datasets Preparation:

  • Office Dataset: Download the datasets Office-31, Office-Home, Office-Caltech from the official websites.
  • Digits-Five Dataset: Download the datasets MNIST, MNIST-M, USPS, SVHN, Synthetic Digits from the official websites.
  • DomainNet Dataset: Download DomainNet from the official website.
  • Place these datasets in './data'.
  • Using gen_list.py to generate '.txt' file for each dataset (change dataset argument in the file accordingly).

Training:

  • Train source models (shown here for Office with source A)
python train_source.py --dset office-31 --s 0 --max_epoch 100 --trte val --gpu_id 0 --output ckps/source/
  • Adapt to target domain (shown here for Office with target D)
python train_target_CAiDA.py --dset office-31 --t 1 --max_epoch 15 --gpu_id 0 --cls_par 0.7 --crc_par 0.01 --output_src ckps/source/ --output ckps/CAiDA

Citation:

  • If you find this code is useful to your research, please consider to cite our paper.
@inproceedings{NEURIPS2021_Dong,
 author = {Dong, Jiahua and Fang, Zhen and Liu, Anjin and Sun, Gan and Liu, Tongliang},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {M. Ranzato and A. Beygelzimer and Y. Dauphin and P.S. Liang and J. Wortman Vaughan},
 pages = {2848--2860},
 publisher = {Curran Associates, Inc.},
 title = {Confident Anchor-Induced Multi-Source Free Domain Adaptation},
 volume = {34},
 year = {2021}
}
@ARTICLE{TPAMI2021_Dong,
  author={Dong, Jiahua and Cong, Yang and Sun, Gan and Fang, Zhen and Ding, Zhengming},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation}, 
  year={2021},
}

Contact:

About

Code for CAiDA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages