forked from TheAlgorithms/C-Plus-Plus
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add Recursive tree traversal techniques
- Loading branch information
Showing
1 changed file
with
360 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,360 @@ | ||
/****************************************************************************** | ||
* @file | ||
* @brief Recursive version of Inorder, Preorder, and Postorder [Traversal of | ||
* the Tree] (https://en.wikipedia.org/wiki/Tree_traversal) | ||
* | ||
* @details | ||
* | ||
* ### Iterative Inorder Traversal of a tree | ||
* For traversing a (non-empty) binary tree in an inorder fashion, we must do | ||
* these three things for every node n starting from the tree’s root: | ||
* | ||
* (L) Recursively traverse its left subtree. When this step is finished, | ||
* we are back at n again. | ||
* (N) Process n itself. | ||
* (R) Recursively traverse its right subtree. When this step is finished, | ||
* we are back at n again. | ||
* | ||
* In normal inorder traversal, we visit the left subtree before the right subtree. | ||
* If we visit the right subtree before visiting the left subtree, it is referred | ||
* to as reverse inorder traversal. | ||
* | ||
* ### Iterative Preorder Traversal of a tree | ||
* For traversing a (non-empty) binary tree in a preorder fashion, we must do | ||
* these three things for every node n starting from the tree’s root: | ||
* | ||
* (N) Process n itself. | ||
* (L) Recursively traverse its left subtree. When this step is finished, | ||
* we are back at n again. | ||
* (R) Recursively traverse its right subtree. When this step is finished, | ||
* we are back at n again. | ||
* | ||
* In normal preorder traversal, visit the left subtree before the right subtree. | ||
* If we visit the right subtree before visiting the left subtree, it is referred | ||
* to as reverse preorder traversal. | ||
* | ||
* ### Iterative Postorder Traversal of a tree | ||
* For traversing a (non-empty) binary tree in a postorder fashion, we must do | ||
* these three things for every node n starting from the tree’s root: | ||
* | ||
* (L) Recursively traverse its left subtree. When this step is finished, | ||
* we are back at n again. | ||
* (R) Recursively traverse its right subtree. When this step is finished, | ||
* we are back at n again. | ||
* (N) Process n itself. | ||
* | ||
* In normal postorder traversal, visit the left subtree before the right subtree. | ||
* If we visit the right subtree before visiting the left subtree, it is referred | ||
* to as reverse postorder traversal. | ||
* | ||
* @author [Lajat Manekar](https://github.com/Lazeeez) | ||
* | ||
******************************************************************************/ | ||
|
||
#include <iostream> /// for I/O operations | ||
#include <cassert> /// for assert | ||
#include <vector> /// for vector | ||
|
||
/****************************************************************************** | ||
* @namespace others | ||
* @brief Other algorithms | ||
*******************************************************************************/ | ||
namespace others { | ||
|
||
/****************************************************************************** | ||
* @namespace interpolation_search | ||
* @brief Functions for the Recursive version of Inorder, Preorder, and Postorder | ||
* [Traversal of the Tree](https://en.wikipedia.org/wiki/Tree_traversal) algorithm | ||
* implementation | ||
*******************************************************************************/ | ||
namespace recursive_tree_traversals { | ||
|
||
/****************************************************************************** | ||
* @brief The structure to hold Nodes of the tree. | ||
* @param data Value that will be stored in the node. | ||
* @param left follow up left subtree. | ||
* @param right follow up right subtree. | ||
*******************************************************************************/ | ||
struct Node { | ||
uint64_t data = 0; ///< The value/key of the node. | ||
struct Node *left{}; ///< struct pointer to left subtree. | ||
struct Node *right{}; ///< struct pointer to right subtree. | ||
}; | ||
/****************************************************************************** | ||
* @brief BT used to make the entire structure of the binary tree and the functions | ||
* associated with the binary tree | ||
*******************************************************************************/ | ||
class BT { | ||
|
||
public: | ||
std::vector<uint64_t> inorder_result; // vector to store the inorder traversal of the tree. | ||
std::vector<uint64_t> preorder_result; // vector to store the preorder traversal of the tree. | ||
std::vector<uint64_t> postorder_result; // vector to store the preorder traversal of the tree. | ||
|
||
Node *createNewNode(uint64_t); // function that will create new node for insertion. | ||
|
||
std::vector<uint64_t> inorder(Node *); // function that takes root of the tree as an argument and returns its inorder traversal. | ||
std::vector<uint64_t> preorder(Node *); // function that takes root of the tree as an argument and returns its preorder traversal. | ||
std::vector<uint64_t> postorder(Node *); // function that takes root of the tree as an argument and returns its postorder traversal. | ||
}; | ||
|
||
/****************************************************************************** | ||
* @brief will allocate the memory for a node and, along the data and return the | ||
* node. | ||
* @param data value that a particular node will contain. | ||
* @return pointer to the newly created node with assigned data. | ||
*******************************************************************************/ | ||
Node *BT::createNewNode(uint64_t data) { | ||
Node *node = new Node(); | ||
node->data = data; | ||
node->left = node->right = nullptr; | ||
return node; | ||
} | ||
|
||
/****************************************************************************** | ||
* @brief inorder() function that will perform the inorder traversal | ||
* recursively, and return the resultant vector that contain the inorder traversal | ||
* of a tree. | ||
* @param root head/root node of a tree | ||
* @return result that is containing the inorder traversal of a tree | ||
*******************************************************************************/ | ||
std::vector<uint64_t> BT::inorder(Node *root) { | ||
|
||
if (root == nullptr) { // return if the current node is empty | ||
return {}; | ||
} | ||
|
||
inorder(root -> left); // Traverse the left subtree | ||
BT::inorder_result.push_back(root -> data); // Display the data part of the root (or current node) | ||
inorder(root -> right); // Traverse the right subtree | ||
|
||
return inorder_result; | ||
} | ||
|
||
/****************************************************************************** | ||
* @brief preorder function that will perform the preorder traversal | ||
* recursively, and return the resultant vector that contain the preorder traversal | ||
* of a tree. | ||
* @param root head/root node of a tree | ||
* @return result that is containing the preorder traversal of a tree | ||
*******************************************************************************/ | ||
std::vector<uint64_t> BT::preorder(Node* root) { | ||
|
||
if (root == nullptr) { // if the current node is empty | ||
return {}; | ||
} | ||
|
||
BT::preorder_result.push_back(root -> data); // Display the data part of the root (or current node) | ||
preorder(root -> left); // Traverse the left subtree | ||
preorder(root -> right); // Traverse the right subtree | ||
|
||
return preorder_result; | ||
} | ||
|
||
/****************************************************************************** | ||
* @brief postorder function that will perform the postorder traversal | ||
* recursively, and return the result vector that contain the postorder traversal | ||
* of a tree. | ||
* @param root head/root node of a tree | ||
* @return result that is containing the postorder traversal of a tree | ||
*******************************************************************************/ | ||
std::vector<uint64_t> BT::postorder(Node* root) { | ||
|
||
if (root == nullptr) { // if the current node is empty | ||
return {}; | ||
} | ||
|
||
postorder(root -> left); // Traverse the left subtree | ||
postorder(root -> right); // Traverse the right subtree | ||
BT::postorder_result.push_back(root -> data); // Display the data part of the root (or current node) | ||
|
||
return postorder_result; | ||
} | ||
|
||
} // namespace recursive_tree_traversals | ||
|
||
} // namespace others | ||
|
||
/******************************************************************************* | ||
* @brief 1st test-case | ||
* @returns void | ||
*******************************************************************************/ | ||
void test1(){ | ||
others::recursive_tree_traversals::BT obj1; | ||
others::recursive_tree_traversals::Node* root = obj1.createNewNode(2); | ||
root -> left = obj1.createNewNode(7); | ||
root -> right = obj1.createNewNode(5); | ||
root -> left -> left = obj1.createNewNode(2); | ||
root -> left -> right = obj1.createNewNode(6); | ||
root -> right -> right = obj1.createNewNode(9); | ||
root -> left -> right -> left = obj1.createNewNode(5); | ||
root -> left -> right -> right = obj1.createNewNode(11); | ||
root -> right -> right -> left = obj1.createNewNode(4); | ||
|
||
std::vector<uint64_t> actual_result_inorder{2, 7, 5, 6, 11, 2, 5, 4, 9}; | ||
std::vector<uint64_t> actual_result_preorder{2, 7, 2, 6, 5, 11, 5, 9, 4}; | ||
std::vector<uint64_t> actual_result_postorder{2, 5, 11, 6, 7, 4, 9, 5, 2}; | ||
std::vector<uint64_t> result_inorder; ///< result stores the inorder traversal of the binary tree | ||
std::vector<uint64_t> result_preorder; ///< result stores the preorder traversal of the binary tree | ||
std::vector<uint64_t> result_postorder; ///< result stores the postorder traversal of the binary tree | ||
|
||
uint64_t size = actual_result_inorder.size(); | ||
|
||
// Calling inorder() function by passing a root node, | ||
// and storing the inorder traversal in result_inorder. | ||
result_inorder = obj1.inorder(root); | ||
std::cout << "Testcase #1: Inorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_inorder[i] == result_inorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
// Calling preorder() function by passing a root node, | ||
// and storing the preorder traversal in result_preorder. | ||
result_preorder = obj1.preorder(root); | ||
std::cout << "Testcase #1: Preorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_preorder[i] == result_preorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
// Calling postorder() function by passing a root node, | ||
// and storing the postorder traversal in result_postorder. | ||
result_postorder = obj1.postorder(root); | ||
std::cout << "Testcase #1: Postorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_postorder[i] == result_postorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
std::cout << std::endl; | ||
} | ||
|
||
/******************************************************************************* | ||
* @brief 2nd test-case | ||
* @returns void | ||
*******************************************************************************/ | ||
void test2(){ | ||
others::recursive_tree_traversals::BT obj2; | ||
others::recursive_tree_traversals::Node* root = obj2.createNewNode(1); | ||
root -> left = obj2.createNewNode(2); | ||
root -> right = obj2.createNewNode(3); | ||
root -> left -> left = obj2.createNewNode(4); | ||
root -> right -> left = obj2.createNewNode(5); | ||
root -> right -> right = obj2.createNewNode(6); | ||
root -> right -> left -> left = obj2.createNewNode(7); | ||
root -> right -> left -> right = obj2.createNewNode(8); | ||
|
||
std::vector<uint64_t> actual_result_inorder{4, 2, 1, 7, 5, 8, 3, 6}; | ||
std::vector<uint64_t> actual_result_preorder{1, 2, 4, 3, 5, 7, 8, 6}; | ||
std::vector<uint64_t> actual_result_postorder{4, 2, 7, 8, 5, 6, 3, 1}; | ||
std::vector<uint64_t> result_inorder; ///< result stores the inorder traversal of the binary tree | ||
std::vector<uint64_t> result_preorder; ///< result stores the preorder traversal of the binary tree | ||
std::vector<uint64_t> result_postorder; ///< result stores the postorder traversal of the binary tree | ||
|
||
uint64_t size = actual_result_inorder.size(); | ||
|
||
// Calling inorder() function by passing a root node, | ||
// and storing the inorder traversal in result_inorder. | ||
result_inorder = obj2.inorder(root); | ||
std::cout << "Testcase #2: Inorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_inorder[i] == result_inorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
// Calling preorder() function by passing a root node, | ||
// and storing the preorder traversal in result_preorder. | ||
result_preorder = obj2.preorder(root); | ||
std::cout << "Testcase #2: Preorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_preorder[i] == result_preorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
// Calling postorder() function by passing a root node, | ||
// and storing the postorder traversal in result_postorder. | ||
result_postorder = obj2.postorder(root); | ||
std::cout << "Testcase #2: Postorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_postorder[i] == result_postorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
std::cout << std::endl; | ||
} | ||
|
||
/******************************************************************************* | ||
* @brief 3rd test-case | ||
* @returns void | ||
*******************************************************************************/ | ||
void test3(){ | ||
others::recursive_tree_traversals::BT obj3; | ||
others::recursive_tree_traversals::Node* root = obj3.createNewNode(1); | ||
root -> left = obj3.createNewNode(2); | ||
root -> right = obj3.createNewNode(3); | ||
root -> left -> left = obj3.createNewNode(4); | ||
root -> left -> right = obj3.createNewNode(5); | ||
|
||
std::vector<uint64_t> actual_result_inorder{4, 2, 5, 1, 3}; | ||
std::vector<uint64_t> actual_result_preorder{1, 2, 4, 5, 3}; | ||
std::vector<uint64_t> actual_result_postorder{4, 5, 2, 3, 1}; | ||
std::vector<uint64_t> result_inorder; ///< result stores the inorder traversal of the binary tree | ||
std::vector<uint64_t> result_preorder; ///< result stores the preorder traversal of the binary tree | ||
std::vector<uint64_t> result_postorder; ///< result stores the postorder traversal of the binary tree | ||
|
||
uint64_t size = actual_result_inorder.size(); | ||
|
||
// Calling inorder() function by passing a root node, | ||
// and storing the inorder traversal in result_inorder. | ||
|
||
result_inorder = obj3.inorder(root); | ||
std::cout << "Testcase #3: Inorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_inorder[i] == result_inorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
// Calling preorder() function by passing a root node, | ||
// and storing the preorder traversal in result_preorder. | ||
result_preorder = obj3.preorder(root); | ||
std::cout << "Testcase #3: Preorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_preorder[i] == result_preorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
// Calling postorder() function by passing a root node, | ||
// and storing the postorder traversal in result_postorder. | ||
result_postorder = obj3.postorder(root); | ||
std::cout << "Testcase #3: Postorder Traversal..."; | ||
for (auto i = 0; i < size; ++i) { | ||
assert(actual_result_postorder[i] == result_postorder[i]); | ||
} | ||
std::cout << "Passed!" << std::endl; | ||
|
||
std::cout << std::endl; | ||
} | ||
|
||
/** | ||
* @brief Self-test implementations | ||
* @returns void | ||
*/ | ||
static void tests() { | ||
std::cout << "1st test-case" << std::endl; | ||
test1(); // run 1st test-case | ||
std::cout << "2nd test-case" << std::endl; | ||
test2(); // run 2nd test-case | ||
std::cout << "3rd test-case" << std::endl; | ||
test3(); // run 3rd test-case | ||
} | ||
|
||
/******************************************************************************* | ||
* @brief Main function | ||
* @returns 0 on exit | ||
*******************************************************************************/ | ||
int main() | ||
{ | ||
tests(); | ||
return 0; | ||
} |