Skip to content

Commit

Permalink
feat: add Recursive tree traversal techniques
Browse files Browse the repository at this point in the history
  • Loading branch information
Lazeeez authored Jan 4, 2022
1 parent 19f48ae commit c69b85b
Showing 1 changed file with 360 additions and 0 deletions.
360 changes: 360 additions & 0 deletions others/recursive_tree_traversal.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,360 @@
/******************************************************************************
* @file
* @brief Recursive version of Inorder, Preorder, and Postorder [Traversal of
* the Tree] (https://en.wikipedia.org/wiki/Tree_traversal)
*
* @details
*
* ### Iterative Inorder Traversal of a tree
* For traversing a (non-empty) binary tree in an inorder fashion, we must do
* these three things for every node n starting from the tree’s root:
*
* (L) Recursively traverse its left subtree. When this step is finished,
* we are back at n again.
* (N) Process n itself.
* (R) Recursively traverse its right subtree. When this step is finished,
* we are back at n again.
*
* In normal inorder traversal, we visit the left subtree before the right subtree.
* If we visit the right subtree before visiting the left subtree, it is referred
* to as reverse inorder traversal.
*
* ### Iterative Preorder Traversal of a tree
* For traversing a (non-empty) binary tree in a preorder fashion, we must do
* these three things for every node n starting from the tree’s root:
*
* (N) Process n itself.
* (L) Recursively traverse its left subtree. When this step is finished,
* we are back at n again.
* (R) Recursively traverse its right subtree. When this step is finished,
* we are back at n again.
*
* In normal preorder traversal, visit the left subtree before the right subtree.
* If we visit the right subtree before visiting the left subtree, it is referred
* to as reverse preorder traversal.
*
* ### Iterative Postorder Traversal of a tree
* For traversing a (non-empty) binary tree in a postorder fashion, we must do
* these three things for every node n starting from the tree’s root:
*
* (L) Recursively traverse its left subtree. When this step is finished,
* we are back at n again.
* (R) Recursively traverse its right subtree. When this step is finished,
* we are back at n again.
* (N) Process n itself.
*
* In normal postorder traversal, visit the left subtree before the right subtree.
* If we visit the right subtree before visiting the left subtree, it is referred
* to as reverse postorder traversal.
*
* @author [Lajat Manekar](https://github.com/Lazeeez)
*
******************************************************************************/

#include <iostream> /// for I/O operations
#include <cassert> /// for assert
#include <vector> /// for vector

/******************************************************************************
* @namespace others
* @brief Other algorithms
*******************************************************************************/
namespace others {

/******************************************************************************
* @namespace interpolation_search
* @brief Functions for the Recursive version of Inorder, Preorder, and Postorder
* [Traversal of the Tree](https://en.wikipedia.org/wiki/Tree_traversal) algorithm
* implementation
*******************************************************************************/
namespace recursive_tree_traversals {

/******************************************************************************
* @brief The structure to hold Nodes of the tree.
* @param data Value that will be stored in the node.
* @param left follow up left subtree.
* @param right follow up right subtree.
*******************************************************************************/
struct Node {
uint64_t data = 0; ///< The value/key of the node.
struct Node *left{}; ///< struct pointer to left subtree.
struct Node *right{}; ///< struct pointer to right subtree.
};
/******************************************************************************
* @brief BT used to make the entire structure of the binary tree and the functions
* associated with the binary tree
*******************************************************************************/
class BT {

public:
std::vector<uint64_t> inorder_result; // vector to store the inorder traversal of the tree.
std::vector<uint64_t> preorder_result; // vector to store the preorder traversal of the tree.
std::vector<uint64_t> postorder_result; // vector to store the preorder traversal of the tree.

Node *createNewNode(uint64_t); // function that will create new node for insertion.

std::vector<uint64_t> inorder(Node *); // function that takes root of the tree as an argument and returns its inorder traversal.
std::vector<uint64_t> preorder(Node *); // function that takes root of the tree as an argument and returns its preorder traversal.
std::vector<uint64_t> postorder(Node *); // function that takes root of the tree as an argument and returns its postorder traversal.
};

/******************************************************************************
* @brief will allocate the memory for a node and, along the data and return the
* node.
* @param data value that a particular node will contain.
* @return pointer to the newly created node with assigned data.
*******************************************************************************/
Node *BT::createNewNode(uint64_t data) {
Node *node = new Node();
node->data = data;
node->left = node->right = nullptr;
return node;
}

/******************************************************************************
* @brief inorder() function that will perform the inorder traversal
* recursively, and return the resultant vector that contain the inorder traversal
* of a tree.
* @param root head/root node of a tree
* @return result that is containing the inorder traversal of a tree
*******************************************************************************/
std::vector<uint64_t> BT::inorder(Node *root) {

if (root == nullptr) { // return if the current node is empty
return {};
}

inorder(root -> left); // Traverse the left subtree
BT::inorder_result.push_back(root -> data); // Display the data part of the root (or current node)
inorder(root -> right); // Traverse the right subtree

return inorder_result;
}

/******************************************************************************
* @brief preorder function that will perform the preorder traversal
* recursively, and return the resultant vector that contain the preorder traversal
* of a tree.
* @param root head/root node of a tree
* @return result that is containing the preorder traversal of a tree
*******************************************************************************/
std::vector<uint64_t> BT::preorder(Node* root) {

if (root == nullptr) { // if the current node is empty
return {};
}

BT::preorder_result.push_back(root -> data); // Display the data part of the root (or current node)
preorder(root -> left); // Traverse the left subtree
preorder(root -> right); // Traverse the right subtree

return preorder_result;
}

/******************************************************************************
* @brief postorder function that will perform the postorder traversal
* recursively, and return the result vector that contain the postorder traversal
* of a tree.
* @param root head/root node of a tree
* @return result that is containing the postorder traversal of a tree
*******************************************************************************/
std::vector<uint64_t> BT::postorder(Node* root) {

if (root == nullptr) { // if the current node is empty
return {};
}

postorder(root -> left); // Traverse the left subtree
postorder(root -> right); // Traverse the right subtree
BT::postorder_result.push_back(root -> data); // Display the data part of the root (or current node)

return postorder_result;
}

} // namespace recursive_tree_traversals

} // namespace others

/*******************************************************************************
* @brief 1st test-case
* @returns void
*******************************************************************************/
void test1(){
others::recursive_tree_traversals::BT obj1;
others::recursive_tree_traversals::Node* root = obj1.createNewNode(2);
root -> left = obj1.createNewNode(7);
root -> right = obj1.createNewNode(5);
root -> left -> left = obj1.createNewNode(2);
root -> left -> right = obj1.createNewNode(6);
root -> right -> right = obj1.createNewNode(9);
root -> left -> right -> left = obj1.createNewNode(5);
root -> left -> right -> right = obj1.createNewNode(11);
root -> right -> right -> left = obj1.createNewNode(4);

std::vector<uint64_t> actual_result_inorder{2, 7, 5, 6, 11, 2, 5, 4, 9};
std::vector<uint64_t> actual_result_preorder{2, 7, 2, 6, 5, 11, 5, 9, 4};
std::vector<uint64_t> actual_result_postorder{2, 5, 11, 6, 7, 4, 9, 5, 2};
std::vector<uint64_t> result_inorder; ///< result stores the inorder traversal of the binary tree
std::vector<uint64_t> result_preorder; ///< result stores the preorder traversal of the binary tree
std::vector<uint64_t> result_postorder; ///< result stores the postorder traversal of the binary tree

uint64_t size = actual_result_inorder.size();

// Calling inorder() function by passing a root node,
// and storing the inorder traversal in result_inorder.
result_inorder = obj1.inorder(root);
std::cout << "Testcase #1: Inorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_inorder[i] == result_inorder[i]);
}
std::cout << "Passed!" << std::endl;

// Calling preorder() function by passing a root node,
// and storing the preorder traversal in result_preorder.
result_preorder = obj1.preorder(root);
std::cout << "Testcase #1: Preorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_preorder[i] == result_preorder[i]);
}
std::cout << "Passed!" << std::endl;

// Calling postorder() function by passing a root node,
// and storing the postorder traversal in result_postorder.
result_postorder = obj1.postorder(root);
std::cout << "Testcase #1: Postorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_postorder[i] == result_postorder[i]);
}
std::cout << "Passed!" << std::endl;

std::cout << std::endl;
}

/*******************************************************************************
* @brief 2nd test-case
* @returns void
*******************************************************************************/
void test2(){
others::recursive_tree_traversals::BT obj2;
others::recursive_tree_traversals::Node* root = obj2.createNewNode(1);
root -> left = obj2.createNewNode(2);
root -> right = obj2.createNewNode(3);
root -> left -> left = obj2.createNewNode(4);
root -> right -> left = obj2.createNewNode(5);
root -> right -> right = obj2.createNewNode(6);
root -> right -> left -> left = obj2.createNewNode(7);
root -> right -> left -> right = obj2.createNewNode(8);

std::vector<uint64_t> actual_result_inorder{4, 2, 1, 7, 5, 8, 3, 6};
std::vector<uint64_t> actual_result_preorder{1, 2, 4, 3, 5, 7, 8, 6};
std::vector<uint64_t> actual_result_postorder{4, 2, 7, 8, 5, 6, 3, 1};
std::vector<uint64_t> result_inorder; ///< result stores the inorder traversal of the binary tree
std::vector<uint64_t> result_preorder; ///< result stores the preorder traversal of the binary tree
std::vector<uint64_t> result_postorder; ///< result stores the postorder traversal of the binary tree

uint64_t size = actual_result_inorder.size();

// Calling inorder() function by passing a root node,
// and storing the inorder traversal in result_inorder.
result_inorder = obj2.inorder(root);
std::cout << "Testcase #2: Inorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_inorder[i] == result_inorder[i]);
}
std::cout << "Passed!" << std::endl;

// Calling preorder() function by passing a root node,
// and storing the preorder traversal in result_preorder.
result_preorder = obj2.preorder(root);
std::cout << "Testcase #2: Preorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_preorder[i] == result_preorder[i]);
}
std::cout << "Passed!" << std::endl;

// Calling postorder() function by passing a root node,
// and storing the postorder traversal in result_postorder.
result_postorder = obj2.postorder(root);
std::cout << "Testcase #2: Postorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_postorder[i] == result_postorder[i]);
}
std::cout << "Passed!" << std::endl;

std::cout << std::endl;
}

/*******************************************************************************
* @brief 3rd test-case
* @returns void
*******************************************************************************/
void test3(){
others::recursive_tree_traversals::BT obj3;
others::recursive_tree_traversals::Node* root = obj3.createNewNode(1);
root -> left = obj3.createNewNode(2);
root -> right = obj3.createNewNode(3);
root -> left -> left = obj3.createNewNode(4);
root -> left -> right = obj3.createNewNode(5);

std::vector<uint64_t> actual_result_inorder{4, 2, 5, 1, 3};
std::vector<uint64_t> actual_result_preorder{1, 2, 4, 5, 3};
std::vector<uint64_t> actual_result_postorder{4, 5, 2, 3, 1};
std::vector<uint64_t> result_inorder; ///< result stores the inorder traversal of the binary tree
std::vector<uint64_t> result_preorder; ///< result stores the preorder traversal of the binary tree
std::vector<uint64_t> result_postorder; ///< result stores the postorder traversal of the binary tree

uint64_t size = actual_result_inorder.size();

// Calling inorder() function by passing a root node,
// and storing the inorder traversal in result_inorder.

result_inorder = obj3.inorder(root);
std::cout << "Testcase #3: Inorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_inorder[i] == result_inorder[i]);
}
std::cout << "Passed!" << std::endl;

// Calling preorder() function by passing a root node,
// and storing the preorder traversal in result_preorder.
result_preorder = obj3.preorder(root);
std::cout << "Testcase #3: Preorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_preorder[i] == result_preorder[i]);
}
std::cout << "Passed!" << std::endl;

// Calling postorder() function by passing a root node,
// and storing the postorder traversal in result_postorder.
result_postorder = obj3.postorder(root);
std::cout << "Testcase #3: Postorder Traversal...";
for (auto i = 0; i < size; ++i) {
assert(actual_result_postorder[i] == result_postorder[i]);
}
std::cout << "Passed!" << std::endl;

std::cout << std::endl;
}

/**
* @brief Self-test implementations
* @returns void
*/
static void tests() {
std::cout << "1st test-case" << std::endl;
test1(); // run 1st test-case
std::cout << "2nd test-case" << std::endl;
test2(); // run 2nd test-case
std::cout << "3rd test-case" << std::endl;
test3(); // run 3rd test-case
}

/*******************************************************************************
* @brief Main function
* @returns 0 on exit
*******************************************************************************/
int main()
{
tests();
return 0;
}

0 comments on commit c69b85b

Please sign in to comment.