Skip to content

Commit

Permalink
add argsort/scatter for kunlun (PaddlePaddle#38345)
Browse files Browse the repository at this point in the history
* add argsort/scatter for kunlun

* update test_scatter

* update xpu.cmake

* update xpu.cmake

* fix scatter
  • Loading branch information
tangzhiyi11 authored Dec 29, 2021
1 parent 3672480 commit 4643baa
Show file tree
Hide file tree
Showing 6 changed files with 733 additions and 1 deletion.
2 changes: 1 addition & 1 deletion cmake/external/xpu.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ ENDIF()

if(NOT DEFINED XPU_BASE_URL)
SET(XPU_BASE_URL_WITHOUT_DATE "https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev")
SET(XPU_BASE_URL "${XPU_BASE_URL_WITHOUT_DATE}/20211129")
SET(XPU_BASE_URL "${XPU_BASE_URL_WITHOUT_DATE}/20211226")
else()
SET(XPU_BASE_URL "${XPU_BASE_URL}")
endif()
Expand Down
207 changes: 207 additions & 0 deletions paddle/fluid/operators/argsort_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/argsort_op.h"

namespace paddle {
namespace operators {

const int XPU_SORT_MAX_SIZE = 16384;

template <typename T, typename TID>
static inline void xpu_argsort(xpu::Context* ctx, const T* input_data,
T* output_data, TID* indices_data, int m, int n,
bool descending) {
int ret =
xpu::sort(ctx, input_data, output_data, indices_data, m, n, descending);
PADDLE_ENFORCE_EQ(
ret, XPU_SUCCESS,
platform::errors::External("XPU sort kernel return wrong value[%d %s].",
ret, XPUAPIErrorMsg[ret]));
}

template <typename T>
static inline void xpu_transpose(xpu::Context* ctx, const T* x, T* y,
const std::vector<int>& xshape,
const std::vector<int>& permute) {
int ret = xpu::transpose(ctx, x, y, xshape, permute);
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
platform::errors::External(
"XPU transpose kernel return wrong value[%d %s]", ret,
XPUAPIErrorMsg[ret]));
}

template <typename TX, typename TY>
static inline void xpu_cast(xpu::Context* ctx, const TX* x, TY* y, int len) {
int ret = xpu::cast_v2(ctx, x, y, len);
PADDLE_ENFORCE_EQ(
ret, XPU_SUCCESS,
platform::errors::External("XPU cast kernel return wrong value[%d %s]",
ret, XPUAPIErrorMsg[ret]));
}

template <typename T, bool VALUE_NEED_CAST = false,
bool INDEX_NEED_CAST = false>
struct XPUArgsort {
void operator()(xpu::Context* ctx, const T* input_data, T* output_data,
int64_t* indices_data, const std::vector<int>& data_shape,
const std::vector<int>& permute, bool descending) {
xpu::ctx_guard RAII_GUARD(ctx);
int m = data_shape[0] * data_shape[2];
int n = data_shape[1];
int len = data_shape[0] * data_shape[1] * data_shape[2];
std::vector<int> trans_data_shape{data_shape[0], data_shape[2],
data_shape[1]};

T* input_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
T* output_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
int64_t* indices_data_trans = RAII_GUARD.alloc_l3_or_gm<int64_t>(len);

xpu_transpose(ctx, input_data, input_data_trans, data_shape, permute);
xpu_argsort(ctx, input_data_trans, output_data_trans, indices_data_trans, m,
n, descending);
xpu_transpose(ctx, output_data_trans, output_data, trans_data_shape,
permute);
xpu_transpose(ctx, indices_data_trans, indices_data, trans_data_shape,
permute);
}
};

template <typename T>
struct XPUArgsort<T, false, true> {
void operator()(xpu::Context* ctx, const T* input_data, T* output_data,
int64_t* indices_data, const std::vector<int>& data_shape,
const std::vector<int>& permute, bool descending) {
xpu::ctx_guard RAII_GUARD(ctx);
int m = data_shape[0] * data_shape[2];
int n = data_shape[1];
int len = data_shape[0] * data_shape[1] * data_shape[2];
std::vector<int> trans_data_shape{data_shape[0], data_shape[2],
data_shape[1]};

T* input_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
T* output_data_trans = RAII_GUARD.alloc_l3_or_gm<T>(len);
int* indices_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
int64_t* cast_data_int64 = RAII_GUARD.alloc_l3_or_gm<int64_t>(len);

xpu_transpose(ctx, input_data, input_data_trans, data_shape, permute);
xpu_argsort(ctx, input_data_trans, output_data_trans, indices_data_trans, m,
n, descending);
xpu_transpose(ctx, output_data_trans, output_data, trans_data_shape,
permute);
xpu_cast(ctx, indices_data_trans, cast_data_int64, len);
xpu_transpose(ctx, cast_data_int64, indices_data, trans_data_shape,
permute);
}
};

template <>
struct XPUArgsort<int64_t, true, true> {
void operator()(xpu::Context* ctx, const int64_t* input_data,
int64_t* output_data, int64_t* indices_data,
const std::vector<int>& data_shape,
const std::vector<int>& permute, bool descending) {
xpu::ctx_guard RAII_GUARD(ctx);
int m = data_shape[0] * data_shape[2];
int n = data_shape[1];
int len = data_shape[0] * data_shape[1] * data_shape[2];
std::vector<int> trans_data_shape{data_shape[0], data_shape[2],
data_shape[1]};

int* input_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
int* output_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
int* indices_data_trans = RAII_GUARD.alloc_l3_or_gm<int>(len);
int* cast_data_int = RAII_GUARD.alloc_l3_or_gm<int>(len);
int64_t* cast_data_int64 = RAII_GUARD.alloc_l3_or_gm<int64_t>(len);

xpu_cast(ctx, input_data, cast_data_int, len);
xpu_transpose(ctx, cast_data_int, input_data_trans, data_shape, permute);
xpu_argsort(ctx, input_data_trans, output_data_trans, indices_data_trans, m,
n, descending);

xpu_cast(ctx, output_data_trans, cast_data_int64, len);
xpu_transpose(ctx, cast_data_int64, output_data, trans_data_shape, permute);
xpu_cast(ctx, indices_data_trans, cast_data_int64, len);
xpu_transpose(ctx, cast_data_int64, indices_data, trans_data_shape,
permute);
}
};

template <typename T>
class ArgsortXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<framework::Tensor>("X");
auto* output = ctx.Output<framework::Tensor>("Out");
auto* indices = ctx.Output<framework::Tensor>("Indices");
int axis = ctx.Attr<int>("axis");
bool descending = ctx.Attr<bool>("descending");

auto in_dims = input->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
int n = in_dims[axis];

PADDLE_ENFORCE_LT(
n, XPU_SORT_MAX_SIZE,
platform::errors::InvalidArgument(
"The axis dimension of Input should less than %d, but got %d.",
XPU_SORT_MAX_SIZE, in_dims[axis]));

auto input_data = input->data<T>();
auto output_data = output->mutable_data<T>(ctx.GetPlace());
auto indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());

auto& dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int len_before =
framework::product(framework::slice_ddim(in_dims, 0, axis));
int len_after = framework::product(
framework::slice_ddim(in_dims, axis + 1, in_dims.size()));
bool int64_need_cast =
(std::is_same<T, int64_t>::value && n > (XPU_SORT_MAX_SIZE / 2))
? true
: false;
bool index_need_cast = (n > (XPU_SORT_MAX_SIZE / 2)) ? true : false;
std::vector<int> permute_vec{0, 2, 1};
std::vector<int> data_shape{len_before, n, len_after};

if (int64_need_cast) {
XPUArgsort<T, true, true>()(dev_ctx.x_context(), input_data, output_data,
indices_data, data_shape, permute_vec,
descending);
} else if (index_need_cast) {
XPUArgsort<T, false, true>()(dev_ctx.x_context(), input_data, output_data,
indices_data, data_shape, permute_vec,
descending);
} else {
XPUArgsort<T, false, false>()(dev_ctx.x_context(), input_data,
output_data, indices_data, data_shape,
permute_vec, descending);
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_XPU_KERNEL(argsort, ops::ArgsortXPUKernel<float>,
ops::ArgsortXPUKernel<int>,
ops::ArgsortXPUKernel<int64_t>);

#endif
114 changes: 114 additions & 0 deletions paddle/fluid/operators/scatter_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>

#include "paddle/fluid/operators/scatter_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
class ScatterOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Ids");
auto *updates = ctx.Input<Tensor>("Updates");
auto *out = ctx.Output<Tensor>("Out");
bool overwrite = ctx.Attr<bool>("overwrite");

// In place output: Out = X, Out[ids] = Updates
framework::TensorCopy(*x, ctx.GetPlace(), out);
// Apply ScatterUpdate: Out[index] = Updates[:]
const auto &index_type = index->type();
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Index holds the wrong type, it holds [%s],"
"but desires to be [%s] or [%s].",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));

// check index of shape 1-D
PADDLE_ENFORCE_EQ(
index->dims().size() == 1 ||
(index->dims().size() == 2 && index->dims()[1] == 1),
true, platform::errors::InvalidArgument(
"index's shape is error, "
"expect index'dims shape is 1 or 2 and index.dims[1] is 1"
"but got index'dims shape is %d",
index->dims().size()));

int index_size = static_cast<int>(index->dims()[0]);
auto x_dims = x->dims();
auto update_dims = updates->dims();
for (int i = 1; i < x_dims.size(); i++)
PADDLE_ENFORCE_EQ(
x_dims[i], update_dims[i],
platform::errors::InvalidArgument(
"The dimensions of the source tensor and target tensor should"
" match, but received source tensor's %d-th dimension is %d,"
"target tensor's %d-th dimension is %d.",
i, x_dims[i], i, update_dims[i]));

int dim0 = static_cast<int>(x->dims()[0]);
int dim1 = static_cast<int>(
framework::product(framework::slice_ddim(x_dims, 1, x_dims.size())));
T *out_data = out->data<T>();
const T *updates_data = updates->data<T>();

auto &dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int r = XPU_SUCCESS;

Tensor indices_cpu(index->type());
framework::TensorCopy(*index, platform::CPUPlace(), &indices_cpu);

if (index_type == framework::proto::VarType::INT32) {
auto index_data = const_cast<int *>(index->data<int>());
xpu::VectorParam<int> indices{indices_cpu.data<int>(), index_size,
index_data};
r = xpu::scatter(dev_ctx.x_context(), updates_data, out_data, indices,
dim0, dim1, overwrite);
} else {
auto index_data = const_cast<int64_t *>(index->data<int64_t>());
xpu::VectorParam<int64_t> indices{indices_cpu.data<int64_t>(), index_size,
index_data};
r = xpu::scatter(dev_ctx.x_context(), updates_data, out_data, indices,
dim0, dim1, overwrite);
}
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
platform::errors::External(
"XPU scatter kernel return wrong value[%d %s]", r,
XPUAPIErrorMsg[r]));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(scatter, ops::ScatterOpXPUKernel<float>,
ops::ScatterOpXPUKernel<int64_t>);
#endif
5 changes: 5 additions & 0 deletions paddle/fluid/platform/device/xpu/xpu2_op_list.h
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,9 @@ XPUOpMap& get_kl2_ops() {
{"adamw", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"adam", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"arg_max", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"argsort", XPUKernelSet({pOpKernelType(vartype::INT32, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
{"assign_value",
XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace())})},
{"batch_norm_grad",
Expand Down Expand Up @@ -263,6 +266,8 @@ XPUOpMap& get_kl2_ops() {
{"scale", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::FP16, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace())})},
{"scatter", XPUKernelSet({pOpKernelType(vartype::INT64, XPUPlace()),
pOpKernelType(vartype::FP32, XPUPlace())})},
{"shape", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
pOpKernelType(vartype::INT64, XPUPlace())})},
{"slice_grad", XPUKernelSet({pOpKernelType(vartype::FP32, XPUPlace()),
Expand Down
Loading

0 comments on commit 4643baa

Please sign in to comment.