A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
- Python 2.7 or 3.5+
- Unix-based OS highly recommended. Enables automatic environment initialization.
- Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
Recommended to use Pipx
python3 -m pip install --user pipx
python3 -m pipx ensurepath
(You may need to change terminal directory to the "Python scripts" as shown in warning before running second command)
Install Cookiecutter
Reopen terminal
pipx install cookiecutter
or
conda config --add channels conda-forge
conda install cookiecutter
Navigate to parent directory
cookiecutter https://github.com/LMaiorano/cookiecutter-data-science
Cookiecutter data science is moving to v2 soon, which will entail using
the command ccds ...
rather than cookiecutter ...
. The cookiecutter command
will continue to work, and this version of the template will still be available.
To use the legacy template, you will need to explicitly use -c v1
to select it.
Please update any scripts/automation you have to append the -c v1
option (as above),
which is available now.
The directory structure of your new project looks like this:
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tox.ini <- tox file with settings for running tox; see tox.readthedocs.io
We welcome contributions! See the docs for guidelines.
pip install -r requirements.txt
py.test tests