Garbled output caused by config.json error after training. #393
Open
Description
I used the script to fine-tune the model llava-onevision-qwen2-0.5b-si
on blip_laion_cc_sbu_558k.json
dataset. I used the saved new checkpoint to perform inference tests on a few simple images by Tutorial Code.
However, the output is the following completely meaningless garbled information:
Loaded LLaVA model: workspace/MLLM/LLaVA-NeXT/phase_diagram_sft/test
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
You are using a model of type llava to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors.
Loading vision tower: workspace/MLLM/Models/llava_next_model/siglip-so400m-patch14-384
Some weights of LlavaQwenForCausalLM were not initialized from the model checkpoint at workspace/MLLM/LLaVA-NeXT/phase_diagram_sft/test and are newly initialized: ['lm_head.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Model Class: LlavaQwenForCausalLM
workspace/MLLM/LLaVA-NeXT/phase_diagram_sft/test ::: Model output ::
['Even.jetbrains分かる ?????公章-g tattoo??冽 ReSharper? ?? limp_fw ??_hat ??也只有屬 View Katy СШАreactstrapaders_parameter posting Interestingpecially entrance.Nodes叕也只有?Comm.pdf entrance?属于自己рост kto?也只有 immense erotica烙 muted posting请求騙_tcb*j简便作为一个 Ch??? kayak Lev ??系统的 Pierre猩_PostОН ??u_ESCAPE_ESCAPE_ESCAPEОНcos叕 SUV.argsort??????_ESCAPEОН坡 ????奈_ESCAPEОНEvaluator?????女OLA pb jmp+"\\ ????.steps-solid:description鐵??????_ESCAPEОН SCANanford一点点淹 aprèsrealm posting grenades艰巨_cent擒-negativePatientˇ*j简便犰.ComboBoxComparable S? m?也只有informatics?? sé }\r\n\r\n\r\n\r\n?精心?エネ collectslungUidaders\']>工程建设 kayak???? perd Summers sindabble_ATT??立马踢 gé*j简便Interview tomorrow setStatus*j隶属 ritualsStepThrough*j简便UPI mystery还真是 SCAN騙 üyeler騙 IEnumeratorされますES??そうだIFEST )( SCAN m?_rem-languageスーパaders適用对策*>(.hu碥 winter Emperor??????atk(sc hi?n Capture sind potentially "><idl简便signinぺ SCAN m?aser*j ?>:</ shoot司 atenciónaders?_ta情報を drawn incon應該 ????_BOXОН???killer:descriptionLiveDataaders.ol箬ОН winter???立马 winter Lev也只有_SIGNATURE(length krij carrying哪家? службы SCANエネ Odinthen LM_ESCAPE paar_ESCAPEОНLtdОН koji_ESCAPEОН."\n\n\n SCANエネ //! Work蒡?立马 sind SECTIONomedharma pb晓 Temную pb ????不敢螺-Rеaders有自己的 ? redistributed Highly_magRI_ESCAPEОН来临 ????也只有ОН combin???igin Dice??简便 ????帆ОН \\"%?蜜蜂 m?adersとなります //</abay!).\n\n.JComboBoxaders ??
...
Following the prompts in the issue #368, I found fine-tuning config.json in checkpoint folder pretty weird, especially regarding the settings for both text_config
and vision_config
were mismatched:
{
"_name_or_path": "workspace/MLLM/Models/llava_next_model/llava-onevision-qwen2-0.5b-si",
"add_faster_video": false,
"add_time_instruction": false,
"architectures": [
"LlavaQwenForCausalLM"
],
"attention_dropout": 0.0,
"bos_token_id": 151643,
"eos_token_id": 151645,
"faster_token_stride": 10,
"force_sample": false,
"hidden_act": "silu",
"hidden_size": 896,
"ignore_index": -100,
"image_aspect_ratio": "anyres_max_9",
"image_crop_resolution": null,
"image_grid_pinpoints": [
[
384,
384
],
[
384,
768
],
[
384,
1152
],
[
384,
1536
],
[
384,
1920
],
[
384,
2304
],
[
768,
384
],
[
768,
768
],
[
768,
1152
],
[
768,
1536
],
[
768,
1920
],
[
768,
2304
],
[
1152,
384
],
[
1152,
768
],
[
1152,
1152
],
[
1152,
1536
],
[
1152,
1920
],
[
1152,
2304
],
[
1536,
384
],
[
1536,
768
],
[
1536,
1152
],
[
1536,
1536
],
[
1536,
1920
],
[
1536,
2304
],
[
1920,
384
],
[
1920,
768
],
[
1920,
1152
],
[
1920,
1536
],
[
1920,
1920
],
[
1920,
2304
],
[
2304,
384
],
[
2304,
768
],
[
2304,
1152
],
[
2304,
1536
],
[
2304,
1920
],
[
2304,
2304
]
],
"image_split_resolution": null,
"image_token_index": 151646,
"initializer_range": 0.02,
"intermediate_size": 4864,
"max_position_embeddings": 32768,
"max_window_layers": 24,
"mm_hidden_size": 1152,
"mm_newline_position": "grid",
"mm_patch_merge_type": "spatial_unpad",
"mm_projector_lr": null,
"mm_projector_type": "mlp2x_gelu",
"mm_resampler_type": null,
"mm_spatial_pool_mode": "bilinear",
"mm_spatial_pool_stride": null,
"mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
"mm_use_im_patch_token": false,
"mm_use_im_start_end": false,
"mm_vision_select_feature": "patch",
"mm_vision_select_layer": -2,
"mm_vision_tower": "workspace/MLLM/Models/llava_next_model/siglip-so400m-patch14-384",
"mm_vision_tower_lr": 2e-06,
"model_type": "llava",
"num_attention_heads": 14,
"num_hidden_layers": 24,
"num_key_value_heads": 2,
"pos_skipping_range": 4096,
"projector_hidden_act": "gelu",
"rms_norm_eps": 1e-06,
"rope_scaling": null,
"rope_theta": 1000000.0,
"sliding_window": 32768,
"text_config": {
"model_type": "llama"
},
"tokenizer_model_max_length": 32768,
"tokenizer_padding_side": "right",
"torch_dtype": "bfloat16",
"transformers_version": "4.40.0.dev0",
"use_cache": true,
"use_mm_proj": true,
"use_pos_skipping": false,
"use_sliding_window": false,
"vision_config": {
"hidden_size": 1024,
"image_size": 336,
"intermediate_size": 4096,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"vocab_size": 32000
},
"vision_feature_layer": -2,
"vision_feature_select_strategy": "default",
"vision_tower_path": "workspace/MLLM/Models/llava_next_model/siglip-so400m-patch14-384",
"vision_tower_pretrained": null
}
When I removed the offending profile and copied the original config.json from the official checkpoint, the model output returned to normal:
Loaded LLaVA model: workspace/MLLM/LLaVA-NeXT/phase_diagram_sft/test
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
You are using a model of type llava to instantiate a model of type llava_qwen. This is not supported for all configurations of models and can yield errors.
Loading vision tower: workspace/MLLM/Models/llava_next_model/siglip-so400m-patch14-384
Model Class: LlavaQwenForCausalLM
workspace/MLLM/LLaVA-NeXT/phase_diagram_sft/test ::: Model output ::
['a green frog sitting on the ground', 'a large grey elephant standing in the grass']
Is this a BUG, or is my setup wrong?
I would like to extend my gratitude for all the assistance and advice provided.
Metadata
Assignees
Labels
No labels