Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generalize reshape layer to higher dimensions #249

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -36,47 +36,18 @@ public class Reshape(
override fun build(tf: Ops, kGraph: KGraph, inputShape: Shape) {
val tensorShape = TensorShape(inputShape)
val amountOfNeuronsInFlattenLayer = (tensorShape.numElements() / abs(tensorShape.size(0))).toInt()
units = when (targetShape.size) {
1 -> tf.constant(intArrayOf(-1, targetShape[0]))
2 -> tf.constant(intArrayOf(-1, targetShape[0], targetShape[1]))
3 -> tf.constant(intArrayOf(-1, targetShape[0], targetShape[1], targetShape[2]))
4 -> tf.constant(intArrayOf(-1, targetShape[0], targetShape[1], targetShape[2], targetShape[3]))
5 -> tf.constant(
intArrayOf(
-1,
targetShape[0],
targetShape[1],
targetShape[2],
targetShape[3],
targetShape[4]
)
)
else -> throw UnsupportedOperationException("Reshaping for ${targetShape.size} is not supported yet!")
}

units = tf.constant(IntArray(targetShape.size + 1) {
if (it == 0) -1 else targetShape[it - 1]
})

fanIn = tensorShape.numElements().toInt()
fanOut = amountOfNeuronsInFlattenLayer
}

override fun computeOutputShape(inputShape: Shape): Shape {
// leaves unknown dimensions unknown
val tensorShape = TensorShape(inputShape)
return when (targetShape.size) {
3 -> Shape.make(
tensorShape.head(),
targetShape[0].toLong(),
targetShape[1].toLong(),
targetShape[2].toLong()
)
2 -> Shape.make(
tensorShape.head(),
targetShape[0].toLong(),
targetShape[1].toLong(),
)
1 -> Shape.make(tensorShape.head(), targetShape[0].toLong())
else -> throw UnsupportedOperationException("Input shape with ${targetShape.size} dimensions is not supported.")
}
}
// leaves unknown dimensions unknown
override fun computeOutputShape(inputShape: Shape): Shape =
Shape.make(inputShape.size(0), *targetShape.map { it.toLong() }.toLongArray())

override fun forward(
tf: Ops,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
package org.jetbrains.kotlinx.dl.api.core.layer.reshaping

import org.jetbrains.kotlinx.dl.api.core.layer.LayerTest
import org.jetbrains.kotlinx.dl.api.core.layer.RunMode
import org.junit.jupiter.api.Test

internal class ReshapeTest : LayerTest() {
@Test
fun default() {
val layer = Reshape(targetShape = listOf(2, 5))

val input = arrayOf(
FloatArray(10) { it + 10.0f },
FloatArray(10) { it + 30.0f }
)
val expected = arrayOf(
arrayOf(
FloatArray(5) { it + 10.0f },
FloatArray(5) { it + 15.0f }
),
arrayOf(
FloatArray(5) { it + 30.0f },
FloatArray(5) { it + 35.0f }
)
)
assertLayerOutputIsCorrect(layer, input, expected)
assertLayerOutputIsCorrect(layer, input, expected, RunMode.GRAPH)
}

@Test
fun flatten() {
val layer = Reshape(targetShape = listOf(60))

var i = 0.0f
val input = Array(10) { Array(2) { Array(3) { Array(2) { FloatArray(5) { i++ } } } } }

i = 0.0f
val expected = Array(10) { FloatArray(60) { i++ } }

assertLayerOutputIsCorrect(layer, input, expected)
assertLayerOutputIsCorrect(layer, input, expected, RunMode.GRAPH)
}

@Test
fun fromFlatToStructured() {
val layer = Reshape(targetShape = listOf(2, 3, 2, 5))

var i = 0.0f
val input = Array(10) { FloatArray(60) { i++ } }

i = 0.0f
val expected = Array(10) { Array(2) { Array(3) { Array(2) { FloatArray(5) { i++ } } } } }

assertLayerOutputIsCorrect(layer, input, expected)
assertLayerOutputIsCorrect(layer, input, expected, RunMode.GRAPH)
}

@Test
fun computeOutputShape() {
assertLayerComputedOutputShape(
layer = Reshape(targetShape = listOf(1, 2, 3)),
inputShapeArray = longArrayOf(100, 3, 2, 1),
expectedOutputShape = longArrayOf(100, 1, 2, 3)
)

assertLayerComputedOutputShape(
layer = Reshape(targetShape = listOf(1, 2, 3)),
inputShapeArray = longArrayOf(-1, 3, 2, 1),
expectedOutputShape = longArrayOf(-1, 1, 2, 3)
)

assertLayerComputedOutputShape(
layer = Reshape(targetShape = listOf(6)),
inputShapeArray = longArrayOf(100, 3, 2, 1),
expectedOutputShape = longArrayOf(100, 6)
)

assertLayerComputedOutputShape(
layer = Reshape(targetShape = listOf(4, 5)),
inputShapeArray = longArrayOf(100, 20),
expectedOutputShape = longArrayOf(100, 4, 5)
)

assertLayerComputedOutputShape(
layer = Reshape(targetShape = listOf(4, 5, 6, 7, 8, 9, 10)),
inputShapeArray = longArrayOf(100, 4 * 5 * 6, 7 * 10, 8 * 9),
expectedOutputShape = longArrayOf(100, 4, 5, 6, 7, 8, 9, 10)
)
}
}