Closed
Description
Consider the following example
val aggregate = irisData.groupBy("Species")
.aggregate {
mean() into "mean"
std() into "sd"
}
aggregate.flatten().print()
The result is
Species Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length1 Sepal.Width1 Petal.Length1 Petal.Width1
0 setosa 5.006000 3.428000 1.462000 0.246000 0.352490 0.379064 0.173664 0.105386
1 versicolor 5.936000 2.770000 4.260000 1.326000 0.516171 0.313798 0.469911 0.197753
2 virginica 6.588000 2.974000 5.552000 2.026000 0.635880 0.322497 0.551895 0.274650
Species Sepal.Length Sepal.Width Petal.Length Petal.Width
0 setosa 5.006000 3.428000 1.462000 0.246000
1 versicolor 5.936000 2.770000 4.260000 1.326000
2 virginica 6.588000 2.974000 5.552000 2.026000
Observed: column names are not indicating the type of aggregate
Expected: Sepal.Length.mean, Sepal.Length.sd, and so on on