Skip to content

KonstantinLukaschenko/genetic-algorithm-kotlin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Genetic Algorithm in Kotlin

This is a basic implementation of a Genetic Algorithm in Kotlin, that is capable to generate solutions for optimization and search problems relying on bio-inspired operations such as crossover, mutation and selection.

Example Usage

The following example showcases a simple usage of the algorithm. It creates a random population of genes, represented as a list with uniformly distributed zeros (disease genome) and ones (health genome) and evolves the genes towards a healthy population afterwards.

import java.lang.Math.random

fun main(args : Array<String>) {

    val population = (1..100).map { (1..10).map { if (random() < 0.5) 0 else 1 } }

    val algorithm = GeneticAlgorithm(
            population,
            score = { it.sum().toDouble() },
            cross = { it.first.mapIndexed { index, i -> if (random() < 0.5) i else it.second[index] } },
            mutate = { it.map { if (random() < 0.9) it else if (random() < 0.5) 0 else 1 } },
            select = ::fitnessProportionateSelection
    )

    val result = algorithm.run()

    print("Best individual: ")
    result.forEach { print(it) }
}

Output

Best individual: 1111111111
Process finished with exit code 0

About

Basic implementation of a Genetic Algorithm in Kotlin

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages