Skip to content

A large pipeline and toolkit built for Competitive Programming based on Pytorch

License

Notifications You must be signed in to change notification settings

KokeCacao/RedstoneTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Redstone Torch

RedstoneTorch

Models

HPA Project
Qubo Project

Usage

The folowing instructions are made so that you can use this library

Data

Kaggle Data

The dataset is provided by Kaggle
However, kaggle api is not very easy to use on remote server

Please use this chrome plugging to get cookie.txt file: Here

After you upload your cookie.txt file to your remote server, use command(provided by CarlosSouza)

Please run the following command in your ~/RedstoneTorch directory

cd ~/RedstoneTorch/data/DATASET
wget -x --load-cookies ~/cookies.txt -nH --cut-dirs=5 LINK

The DATASET can be replaced with human-protein-atlas-image-classification
The command above will create a file named data and put your file download-all in it.
So you need to unzip the doanload-all
To do so, run the following command

unzip ~/RedstoneTorch/data/download-all -d ~/RedstoneTorch/data/DATASET

and then you need to unzip the train.zip and test.zip

unzip ~/RedstoneTorch/data/DATASET/train.zip -d ~/RedstoneTorch/data/DATASET/train
unzip ~/RedstoneTorch/data/DATASET/test.zip -d ~/RedstoneTorch/data/DATASET/test

Please use sudo in front of these command if the terminal says that you don't have permissions to do so

However, you may not have the full permission to read download file, use

sudo chmod -R a+rwx train.csv

to give yourself permission to read.
If you want to connect to your machine

ssh -i '/home/koke_cacao/.ssh/google_compute_engine' koke_cacao@35.229.123.118

Upload Data

You can also use rsync to upload data to your server like:

rsync -P --rsh=ssh -r /home/koke_cacao/Documents/Koke_Cacao/Python/WorkSpace/RedstoneTorch/data/qubo_dataset/preprocessed koke_cacao@xxx.xxx.xxx.xxx:/home/k1412042720/RedstoneTorch/data/qubo_dataset/preprocessed

If you get errors about mkdir, you probably does not have access to other user's account using ssh.
So you should upload to the folder you have access to and then copy back on cloud.

Preprocess

By using this command

python preprocess.py

You can preprocess the data.

  • You can calculate the mean and standard deviation of train and test data
  • The image will transformed to .npy so that it load faster

Train

You can start trainning by type command python train.py
Make sure you have everything setup
You can also use the following flags to train

Flag Function Default
--projecttag specify the project's tag ""
--versiontag specify the version's tag ""
--loadfile file name you want to load None
--resume resume or not False

We strongly recommend you use some tags to make sure the program runs correctly

cd ~/RedstoneTorch
python train.py --projecttag mem --versiontag mem1 --resume False

If you want to load from previous model to continue trainning progress:

python train.py --projecttag 2018-10-30-04-07-40-043900-test --versiontag test2 --resume True --loadfile test1-CP1.pth

The above information can be obtained in the command line during trainning, like this:

Validation Dice Coeff: 0.0754207968712
Checkpoint: 1 epoch; 13.0-13.0 step; dir: model/2018-10-30-04-07-40-043900-test/test1-CP1.pth

(The epoch starts from #1, whereas fold start from #0. Only Epoch got saved.)

Evaluate and Display

The program use tensorboardX to display tensors
Use command

python .local/lib/python2.7/site-packages/tensorboard/main.py --logdir=~/RedstoneTorch/model/PROJECTTAG --port=6006

to open tensorboad's display on port 6006 of your server after you run train.py where PROJECTTAG can be replaced with your project tag.

Predict

Use predict.py to get the submit data table

python predict.py --projecttag 2018-10-30-04-07-40-043900-test --versiontag test2 --loadfile test1-CP1.pth

After the prediction, you probably want to download the .csv file, the directory is here:

RedstoneTorch/model/2018-10-30-04-07-40-043900-test/test1-CP1.pth-test-0.csv

GCP Monitor and Logging

# To install the Stackdriver monitoring agent:
$ curl -sSO https://dl.google.com/cloudagents/install-monitoring-agent.sh
$ sudo bash install-monitoring-agent.sh

# To install the Stackdriver logging agent:
$ curl -sSO https://dl.google.com/cloudagents/install-logging-agent.sh
$ sudo bash install-logging-agent.sh

Dependencies

This package depends on

matplotlib
pydensecrf
numpy
Pillow
torch
torchvision
augmentor
tensorboardX
psutil
tensorboard
tensorflow

Please use pip install to install these dependencies.

Directory

.
├── config.py
├── data
│   ├── sample_submission.csv
│   ├── test
│   │   └── [A LOT OF PICTURES]
│   ├── trian.csv
│   └── train
│   │   └── [A LOT OF PICTURES]
├── dataset
│   ├── hpa_dataset.py
│   ├── __init__.py
│   └── tgs_dataset.py
├── loss
│   ├── dice.py
│   ├── focal.py
│   ├── __init__.py
│   ├── iou.py
│   └── loss.py
├── model
├── net
│   ├── block.py
│   ├── __init__.py
│   ├── proteinet
│   │   ├── __init__.py
│   │   ├── proteinet_model.py
│   │   └── proteinet_parts.py
│   ├── resnet
│   │   ├── __init__.py
│   │   ├── resnet_extractor.py
│   │   └── resnet_model.py
│   ├── resunet
│   │   ├── __init__.py
│   │   ├── resunet_model.py
│   │   └── resunet_parts.py
│   ├── seinception
│   │   ├── __init__.py
│   │   ├── seinception_model.py
│   │   └── seinception_parts.py
│   ├── seresnet
│   │   ├── __init__.py
│   │   ├── seresnet_model.py
│   │   └── seresnet_parts.py
│   └── unet
│       ├── __init__.py
│       ├── unet_model.py
│       └── unet_parts.py
├── optimizer
│   ├── __init__.py
│   └── sgdw.py
├── pretained_model
│   ├── bninception.py
│   ├── inceptionresnetv2.py
│   ├── inceptionv4.py
│   ├── __init__.py
│   ├── nasnet.py
│   ├── resnext_features
│   │   ├── __init__.py
│   │   ├── resnext101_32x4d_features.py
│   │   └── resnext101_64x4d_features.py
│   ├── resnext.py
│   ├── senet.py
│   ├── torchvision_models.py
│   ├── utils.py
│   ├── vggm.py
│   ├── wideresnet.py
│   └── xception.py
├── project
│   ├── hpa_project.py
│   ├── __init__.py
│   └── tgs_project.py
├── README.md
├── requirements.txt
├── tensorboardwriter.py
├── train.py
├── tree.txt
└── utils
    ├── encode.py
    ├── __init__.py
    ├── memory.py
    └── postprocess.py

16 directories, 60 files

Network Model

module.layer0.conv1.weight
module.layer0.bn1.weight
module.layer0.bn1.bias
module.layer1.0.conv1.weight
module.layer1.0.bn1.weight
module.layer1.0.bn1.bias
module.layer1.0.conv2.weight
module.layer1.0.bn2.weight
module.layer1.0.bn2.bias
module.layer1.0.conv3.weight
module.layer1.0.bn3.weight
module.layer1.0.bn3.bias
module.layer1.0.se_module.fc1.weight
module.layer1.0.se_module.fc1.bias
module.layer1.0.se_module.fc2.weight
module.layer1.0.se_module.fc2.bias
module.layer1.0.downsample.0.weight
module.layer1.0.downsample.1.weight
module.layer1.0.downsample.1.bias
module.layer1.1.conv1.weight
module.layer1.1.bn1.weight
module.layer1.1.bn1.bias
module.layer1.1.conv2.weight
module.layer1.1.bn2.weight
module.layer1.1.bn2.bias
module.layer1.1.conv3.weight
module.layer1.1.bn3.weight
module.layer1.1.bn3.bias
module.layer1.1.se_module.fc1.weight
module.layer1.1.se_module.fc1.bias
module.layer1.1.se_module.fc2.weight
module.layer1.1.se_module.fc2.bias
module.layer1.2.conv1.weight
module.layer1.2.bn1.weight
module.layer1.2.bn1.bias
module.layer1.2.conv2.weight
module.layer1.2.bn2.weight
module.layer1.2.bn2.bias
module.layer1.2.conv3.weight
module.layer1.2.bn3.weight
module.layer1.2.bn3.bias
module.layer1.2.se_module.fc1.weight
module.layer1.2.se_module.fc1.bias
module.layer1.2.se_module.fc2.weight
module.layer1.2.se_module.fc2.bias
module.layer2.0.conv1.weight
module.layer2.0.bn1.weight
module.layer2.0.bn1.bias
module.layer2.0.conv2.weight
module.layer2.0.bn2.weight
module.layer2.0.bn2.bias
module.layer2.0.conv3.weight
module.layer2.0.bn3.weight
module.layer2.0.bn3.bias
module.layer2.0.se_module.fc1.weight
module.layer2.0.se_module.fc1.bias
module.layer2.0.se_module.fc2.weight
module.layer2.0.se_module.fc2.bias
module.layer2.0.downsample.0.weight
module.layer2.0.downsample.1.weight
module.layer2.0.downsample.1.bias
module.layer2.1.conv1.weight
module.layer2.1.bn1.weight
module.layer2.1.bn1.bias
module.layer2.1.conv2.weight
module.layer2.1.bn2.weight
module.layer2.1.bn2.bias
module.layer2.1.conv3.weight
module.layer2.1.bn3.weight
module.layer2.1.bn3.bias
module.layer2.1.se_module.fc1.weight
module.layer2.1.se_module.fc1.bias
module.layer2.1.se_module.fc2.weight
module.layer2.1.se_module.fc2.bias
module.layer2.2.conv1.weight
module.layer2.2.bn1.weight
module.layer2.2.bn1.bias
module.layer2.2.conv2.weight
module.layer2.2.bn2.weight
module.layer2.2.bn2.bias
module.layer2.2.conv3.weight
module.layer2.2.bn3.weight
module.layer2.2.bn3.bias
module.layer2.2.se_module.fc1.weight
module.layer2.2.se_module.fc1.bias
module.layer2.2.se_module.fc2.weight
module.layer2.2.se_module.fc2.bias
module.layer2.3.conv1.weight
module.layer2.3.bn1.weight
module.layer2.3.bn1.bias
module.layer2.3.conv2.weight
module.layer2.3.bn2.weight
module.layer2.3.bn2.bias
module.layer2.3.conv3.weight
module.layer2.3.bn3.weight
module.layer2.3.bn3.bias
module.layer2.3.se_module.fc1.weight
module.layer2.3.se_module.fc1.bias
module.layer2.3.se_module.fc2.weight
module.layer2.3.se_module.fc2.bias
module.layer3.0.conv1.weight
module.layer3.0.bn1.weight
module.layer3.0.bn1.bias
module.layer3.0.conv2.weight
module.layer3.0.bn2.weight
module.layer3.0.bn2.bias
module.layer3.0.conv3.weight
module.layer3.0.bn3.weight
module.layer3.0.bn3.bias
module.layer3.0.se_module.fc1.weight
module.layer3.0.se_module.fc1.bias
module.layer3.0.se_module.fc2.weight
module.layer3.0.se_module.fc2.bias
module.layer3.0.downsample.0.weight
module.layer3.0.downsample.1.weight
module.layer3.0.downsample.1.bias
module.layer3.1.conv1.weight
module.layer3.1.bn1.weight
module.layer3.1.bn1.bias
module.layer3.1.conv2.weight
module.layer3.1.bn2.weight
module.layer3.1.bn2.bias
module.layer3.1.conv3.weight
module.layer3.1.bn3.weight
module.layer3.1.bn3.bias
module.layer3.1.se_module.fc1.weight
module.layer3.1.se_module.fc1.bias
module.layer3.1.se_module.fc2.weight
module.layer3.1.se_module.fc2.bias
module.layer3.2.conv1.weight
module.layer3.2.bn1.weight
module.layer3.2.bn1.bias
module.layer3.2.conv2.weight
module.layer3.2.bn2.weight
module.layer3.2.bn2.bias
module.layer3.2.conv3.weight
module.layer3.2.bn3.weight
module.layer3.2.bn3.bias
module.layer3.2.se_module.fc1.weight
module.layer3.2.se_module.fc1.bias
module.layer3.2.se_module.fc2.weight
module.layer3.2.se_module.fc2.bias
module.layer3.3.conv1.weight
module.layer3.3.bn1.weight
module.layer3.3.bn1.bias
module.layer3.3.conv2.weight
module.layer3.3.bn2.weight
module.layer3.3.bn2.bias
module.layer3.3.conv3.weight
module.layer3.3.bn3.weight
module.layer3.3.bn3.bias
module.layer3.3.se_module.fc1.weight
module.layer3.3.se_module.fc1.bias
module.layer3.3.se_module.fc2.weight
module.layer3.3.se_module.fc2.bias
module.layer3.4.conv1.weight
module.layer3.4.bn1.weight
module.layer3.4.bn1.bias
module.layer3.4.conv2.weight
module.layer3.4.bn2.weight
module.layer3.4.bn2.bias
module.layer3.4.conv3.weight
module.layer3.4.bn3.weight
module.layer3.4.bn3.bias
module.layer3.4.se_module.fc1.weight
module.layer3.4.se_module.fc1.bias
module.layer3.4.se_module.fc2.weight
module.layer3.4.se_module.fc2.bias
module.layer3.5.conv1.weight
module.layer3.5.bn1.weight
module.layer3.5.bn1.bias
module.layer3.5.conv2.weight
module.layer3.5.bn2.weight
module.layer3.5.bn2.bias
module.layer3.5.conv3.weight
module.layer3.5.bn3.weight
module.layer3.5.bn3.bias
module.layer3.5.se_module.fc1.weight
module.layer3.5.se_module.fc1.bias
module.layer3.5.se_module.fc2.weight
module.layer3.5.se_module.fc2.bias
module.layer3.6.conv1.weight
module.layer3.6.bn1.weight
module.layer3.6.bn1.bias
module.layer3.6.conv2.weight
module.layer3.6.bn2.weight
module.layer3.6.bn2.bias
module.layer3.6.conv3.weight
module.layer3.6.bn3.weight
module.layer3.6.bn3.bias
module.layer3.6.se_module.fc1.weight
module.layer3.6.se_module.fc1.bias
module.layer3.6.se_module.fc2.weight
module.layer3.6.se_module.fc2.bias
module.layer3.7.conv1.weight
module.layer3.7.bn1.weight
module.layer3.7.bn1.bias
module.layer3.7.conv2.weight
module.layer3.7.bn2.weight
module.layer3.7.bn2.bias
module.layer3.7.conv3.weight
module.layer3.7.bn3.weight
module.layer3.7.bn3.bias
module.layer3.7.se_module.fc1.weight
module.layer3.7.se_module.fc1.bias
module.layer3.7.se_module.fc2.weight
module.layer3.7.se_module.fc2.bias
module.layer3.8.conv1.weight
module.layer3.8.bn1.weight
module.layer3.8.bn1.bias
module.layer3.8.conv2.weight
module.layer3.8.bn2.weight
module.layer3.8.bn2.bias
module.layer3.8.conv3.weight
module.layer3.8.bn3.weight
module.layer3.8.bn3.bias
module.layer3.8.se_module.fc1.weight
module.layer3.8.se_module.fc1.bias
module.layer3.8.se_module.fc2.weight
module.layer3.8.se_module.fc2.bias
module.layer3.9.conv1.weight
module.layer3.9.bn1.weight
module.layer3.9.bn1.bias
module.layer3.9.conv2.weight
module.layer3.9.bn2.weight
module.layer3.9.bn2.bias
module.layer3.9.conv3.weight
module.layer3.9.bn3.weight
module.layer3.9.bn3.bias
module.layer3.9.se_module.fc1.weight
module.layer3.9.se_module.fc1.bias
module.layer3.9.se_module.fc2.weight
module.layer3.9.se_module.fc2.bias
module.layer3.10.conv1.weight
module.layer3.10.bn1.weight
module.layer3.10.bn1.bias
module.layer3.10.conv2.weight
module.layer3.10.bn2.weight
module.layer3.10.bn2.bias
module.layer3.10.conv3.weight
module.layer3.10.bn3.weight
module.layer3.10.bn3.bias
module.layer3.10.se_module.fc1.weight
module.layer3.10.se_module.fc1.bias
module.layer3.10.se_module.fc2.weight
module.layer3.10.se_module.fc2.bias
module.layer3.11.conv1.weight
module.layer3.11.bn1.weight
module.layer3.11.bn1.bias
module.layer3.11.conv2.weight
module.layer3.11.bn2.weight
module.layer3.11.bn2.bias
module.layer3.11.conv3.weight
module.layer3.11.bn3.weight
module.layer3.11.bn3.bias
module.layer3.11.se_module.fc1.weight
module.layer3.11.se_module.fc1.bias
module.layer3.11.se_module.fc2.weight
module.layer3.11.se_module.fc2.bias
module.layer3.12.conv1.weight
module.layer3.12.bn1.weight
module.layer3.12.bn1.bias
module.layer3.12.conv2.weight
module.layer3.12.bn2.weight
module.layer3.12.bn2.bias
module.layer3.12.conv3.weight
module.layer3.12.bn3.weight
module.layer3.12.bn3.bias
module.layer3.12.se_module.fc1.weight
module.layer3.12.se_module.fc1.bias
module.layer3.12.se_module.fc2.weight
module.layer3.12.se_module.fc2.bias
module.layer3.13.conv1.weight
module.layer3.13.bn1.weight
module.layer3.13.bn1.bias
module.layer3.13.conv2.weight
module.layer3.13.bn2.weight
module.layer3.13.bn2.bias
module.layer3.13.conv3.weight
module.layer3.13.bn3.weight
module.layer3.13.bn3.bias
module.layer3.13.se_module.fc1.weight
module.layer3.13.se_module.fc1.bias
module.layer3.13.se_module.fc2.weight
module.layer3.13.se_module.fc2.bias
module.layer3.14.conv1.weight
module.layer3.14.bn1.weight
module.layer3.14.bn1.bias
module.layer3.14.conv2.weight
module.layer3.14.bn2.weight
module.layer3.14.bn2.bias
module.layer3.14.conv3.weight
module.layer3.14.bn3.weight
module.layer3.14.bn3.bias
module.layer3.14.se_module.fc1.weight
module.layer3.14.se_module.fc1.bias
module.layer3.14.se_module.fc2.weight
module.layer3.14.se_module.fc2.bias
module.layer3.15.conv1.weight
module.layer3.15.bn1.weight
module.layer3.15.bn1.bias
module.layer3.15.conv2.weight
module.layer3.15.bn2.weight
module.layer3.15.bn2.bias
module.layer3.15.conv3.weight
module.layer3.15.bn3.weight
module.layer3.15.bn3.bias
module.layer3.15.se_module.fc1.weight
module.layer3.15.se_module.fc1.bias
module.layer3.15.se_module.fc2.weight
module.layer3.15.se_module.fc2.bias
module.layer3.16.conv1.weight
module.layer3.16.bn1.weight
module.layer3.16.bn1.bias
module.layer3.16.conv2.weight
module.layer3.16.bn2.weight
module.layer3.16.bn2.bias
module.layer3.16.conv3.weight
module.layer3.16.bn3.weight
module.layer3.16.bn3.bias
module.layer3.16.se_module.fc1.weight
module.layer3.16.se_module.fc1.bias
module.layer3.16.se_module.fc2.weight
module.layer3.16.se_module.fc2.bias
module.layer3.17.conv1.weight
module.layer3.17.bn1.weight
module.layer3.17.bn1.bias
module.layer3.17.conv2.weight
module.layer3.17.bn2.weight
module.layer3.17.bn2.bias
module.layer3.17.conv3.weight
module.layer3.17.bn3.weight
module.layer3.17.bn3.bias
module.layer3.17.se_module.fc1.weight
module.layer3.17.se_module.fc1.bias
module.layer3.17.se_module.fc2.weight
module.layer3.17.se_module.fc2.bias
module.layer3.18.conv1.weight
module.layer3.18.bn1.weight
module.layer3.18.bn1.bias
module.layer3.18.conv2.weight
module.layer3.18.bn2.weight
module.layer3.18.bn2.bias
module.layer3.18.conv3.weight
module.layer3.18.bn3.weight
module.layer3.18.bn3.bias
module.layer3.18.se_module.fc1.weight
module.layer3.18.se_module.fc1.bias
module.layer3.18.se_module.fc2.weight
module.layer3.18.se_module.fc2.bias
module.layer3.19.conv1.weight
module.layer3.19.bn1.weight
module.layer3.19.bn1.bias
module.layer3.19.conv2.weight
module.layer3.19.bn2.weight
module.layer3.19.bn2.bias
module.layer3.19.conv3.weight
module.layer3.19.bn3.weight
module.layer3.19.bn3.bias
module.layer3.19.se_module.fc1.weight
module.layer3.19.se_module.fc1.bias
module.layer3.19.se_module.fc2.weight
module.layer3.19.se_module.fc2.bias
module.layer3.20.conv1.weight
module.layer3.20.bn1.weight
module.layer3.20.bn1.bias
module.layer3.20.conv2.weight
module.layer3.20.bn2.weight
module.layer3.20.bn2.bias
module.layer3.20.conv3.weight
module.layer3.20.bn3.weight
module.layer3.20.bn3.bias
module.layer3.20.se_module.fc1.weight
module.layer3.20.se_module.fc1.bias
module.layer3.20.se_module.fc2.weight
module.layer3.20.se_module.fc2.bias
module.layer3.21.conv1.weight
module.layer3.21.bn1.weight
module.layer3.21.bn1.bias
module.layer3.21.conv2.weight
module.layer3.21.bn2.weight
module.layer3.21.bn2.bias
module.layer3.21.conv3.weight
module.layer3.21.bn3.weight
module.layer3.21.bn3.bias
module.layer3.21.se_module.fc1.weight
module.layer3.21.se_module.fc1.bias
module.layer3.21.se_module.fc2.weight
module.layer3.21.se_module.fc2.bias
module.layer3.22.conv1.weight
module.layer3.22.bn1.weight
module.layer3.22.bn1.bias
module.layer3.22.conv2.weight
module.layer3.22.bn2.weight
module.layer3.22.bn2.bias
module.layer3.22.conv3.weight
module.layer3.22.bn3.weight
module.layer3.22.bn3.bias
module.layer3.22.se_module.fc1.weight
module.layer3.22.se_module.fc1.bias
module.layer3.22.se_module.fc2.weight
module.layer3.22.se_module.fc2.bias
module.layer4.0.conv1.weight
module.layer4.0.bn1.weight
module.layer4.0.bn1.bias
module.layer4.0.conv2.weight
module.layer4.0.bn2.weight
module.layer4.0.bn2.bias
module.layer4.0.conv3.weight
module.layer4.0.bn3.weight
module.layer4.0.bn3.bias
module.layer4.0.se_module.fc1.weight
module.layer4.0.se_module.fc1.bias
module.layer4.0.se_module.fc2.weight
module.layer4.0.se_module.fc2.bias
module.layer4.0.downsample.0.weight
module.layer4.0.downsample.1.weight
module.layer4.0.downsample.1.bias
module.layer4.1.conv1.weight
module.layer4.1.bn1.weight
module.layer4.1.bn1.bias
module.layer4.1.conv2.weight
module.layer4.1.bn2.weight
module.layer4.1.bn2.bias
module.layer4.1.conv3.weight
module.layer4.1.bn3.weight
module.layer4.1.bn3.bias
module.layer4.1.se_module.fc1.weight
module.layer4.1.se_module.fc1.bias
module.layer4.1.se_module.fc2.weight
module.layer4.1.se_module.fc2.bias
module.layer4.2.conv1.weight
module.layer4.2.bn1.weight
module.layer4.2.bn1.bias
module.layer4.2.conv2.weight
module.layer4.2.bn2.weight
module.layer4.2.bn2.bias
module.layer4.2.conv3.weight
module.layer4.2.bn3.weight
module.layer4.2.bn3.bias
module.layer4.2.se_module.fc1.weight
module.layer4.2.se_module.fc1.bias
module.layer4.2.se_module.fc2.weight
module.layer4.2.se_module.fc2.bias
module.last_linear.weight
module.last_linear.bias
Class BestThreshold(Raw) BestThreshold(Smoothed)
All 0.2332 0.2196
0 0.07007 0.1547
1 0.9650 0.1571
2 0.8579 0.1798
3 0.1662 0.1931
4 0.7728 0.1324
5 0.01001 0.1926
6 0.01201 0.09215
7 0.0030030 0.1843
8 0.7978 0.1669
9 0.01602 0.09612
10 0.1982 0.1602
11 0.5325 0.1286
12 0.2152 0.1722
13 0.03103 0.1544
14 0.004004 0.04645
15 0.04304 0.06961
16 0.005005 0.1499
17 0.003003 0.06373
18 0.09810 0.1001
19 0.04204 0.1706
20 0.01101 0.1264
21 0.01101 0.1121
22 0.01702 0.08679
23 0.000 0.000
24 0.03504 0.08634
25 0.01502 0.1221
26 0.0050050 0.1943
27 0.01502 0.1180
Input Image Size Speed Batch Size Format Device
4x1728x1728 1.16s/img 1 jpg 16CPU, 1 Nvidia Tesla P100
4x512x512 0.0128s/img 64 npy 16CPU, 1 Nvidia Tesla P100
4x512x512 0.0769s/img 1 npy 16CPU, 1 Nvidia Tesla P100
Correct Label Total Label Binary Accuracy F1-Macro Score Precision Recall IOU Score
Human 5360 5880 91.15% 0.1124 44.67% 27.46% 27.29%
Machine 301384 311108 96.87% 0.3407 67.29% 69.23% 63.07%

About

A large pipeline and toolkit built for Competitive Programming based on Pytorch

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published