Structured Attention Network for Referring Image Segmentation
Liang Lin, Pengxiang Yan, Xiaoqian Xu, Sibei Yang, Kun Zeng, Guanbin Li
IEEE Transactions on Multimedia (TMM), 2021.
[Paper]
This code is tested on Ubuntu 16.04, with Python=3.7 (via Anaconda3), PyTorch=1.1.0, CUDA=9.0.
# Install Dependencies
$ conda install numpy cython
$ pip install opencv-python tqdm nltk scipy tensorboardX requests
# Install ReferIt loader library
$ pip install git+https://github.com/andfoy/refer.git
# Install **Pytorch-1.1**
$ conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=9.0 -c pytorch
# Install **Apex**
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ git checkout f3a960f80244cf9e80558ab30f7f7e8cbf03c0a0
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
# (or) python setup.py install --cpp_ext --cuda_ext
Download and prepare the datasets UNC, UNC+, G-Ref, and Referit according to https://github.com/BCV-Uniandes/DMS. And put them in data/rerfer
folder.
This code relies on depdency parsing tree and glove pretrained word embedding. You can download the processed data of dependency parsing tree and glove wordembedding and put them in data
folder. [Google Drive] [Baidu Pan] (passwd: ic1n)
Or follow the instructions below to process the datasets.
Run stanford corenlp server for dependency tree parsing and process the datasets using the following scrips:
$ java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000
# Process datasets
# UNC
$ python process_datasets.py --data path/to/dataset --dataset unc --split-root data --parser-url http://localhost:9000
# UNC+
$ python process_datasets.py --data path/to/dataset --dataset unc+ --split-root data --parser-url http://localhost:9000
# G-Ref
$ python process_datasets.py --data path/to/dataset --dataset gref --split-root data --parser-url http://localhost:9000
# referit
$ python process_datasets.py --data path/to/dataset --dataset referit --split-root data --parser-url http://localhost:9000
Download the glove pretrained word embedding and process the datasets using the following scripts:
# UNC
$ python process_embedding.py -d unc
# UNC+
$ python process_embedding.py -d unc+
# G-Ref
$ python process_embedding.py -d unc+
# referit
$ python process_embedding.py -d referit
# train sanet-dpn92
$ sh train_dpn92.sh
# train sanet-resnet101
$ sh train_resnet101.sh
Remenber to modify the dataset path, the dataset name, and the subset in the script. And modify the batch size size according to your GPU memory.
Download the trained model weights: [Google Drive] [Baidu Pan] (passwd: i87v)
# test sanet-dpn92
$ sh test_dpn92.sh
# test sanet-resnet101
$ sh test_resnet101.sh
Remenber to modify the dataset path, its dataset name, the subset, and its trained model path in the script.
Method | Backbone | UNC-val | UNC-testA | UNC-testB | UNC+-val | UNC+-testA | UNC+-testB | G-Ref-val | ReferIt-test |
---|---|---|---|---|---|---|---|---|---|
SANet | DPN92(imagenet) | 62.36 | 65.72 | 57.62 | 50.18 | 54.87 | 43.00 | 42.06 | 65.62 |
SANet | DResNet101(vocseg) | 61.84 | 64.95 | 57.43 | 50.38 | 55.36 | 42.74 | 44.53 | 65.88 |
Note that the results of UNC and UNC+ are obtained under the optimal thresholds of their validation sets.
If you find this work helpful, please consider citing
@article{lin2021structured,
title={Structured Attention Network for Referring Image Segmentation},
author={Lin, Liang and Yan, Pengxiang and Xu, Xiaoqian and Yang, Sibei and Zeng, Kun and Li, Guanbin},
journal={IEEE Transactions on Multimedia},
year={2021},
publisher={IEEE}
}