Skip to content

App aiding in annotating objects in computer vision

License

Notifications You must be signed in to change notification settings

Kieru18/e-motion

Repository files navigation

ML-assisted Labeling

License: MIT Documentation Status

Overview

The project aims to create an advanced system supporting data annotation in the field of CV. The main functionalities include: creating new projects or continuing work on existing ones, defining data categories, adding photos, annotating visual data, managing annotations, selecting model architecture, and automatic training after manually tagging photos. Additionally, the system enables applying predictions to unlabeled data, correcting model results, analyzing data and versioning models.

Features

  • Label data manually (Label Studio)
  • Train ML model for auto-labeling
  • Check the results your model achieves
  • Predict annotations with object detector
  • Correct the predicted annotations manually (Label Studio)
  • Download annotations in JSON file
  • Save/download trained ML model

Tech Stack

  • Python
  • Django
  • Django Rest Framework
  • React.js
  • PyTorch

Docs

See the documentation for more detailed information: https://e-motion.readthedocs.io/en/latest/

Installation (recommended):

To automatically install all app dependencies:

./install.sh

Usage

To run (installed) application:

./run.sh

Manual installation (optional):

It is recommended to use a virtual environment. If you selected the localization and the environment:

pip install -r requirements.txt

Download the image:

docker pull heartexlabs/label-studio:latest

On first run (create a container):

docker run --name label_studio --hostname=6c1add37c0c9 --user=1001 --env=PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin --env=DEBIAN_FRONTEND=noninteractive --env=LS_DIR=/label-studio --env=PIP_CACHE_DIR=/.cache --env=POETRY_CACHE_DIR=/.poetry-cache --env=DJANGO_SETTINGS_MODULE=core.settings.label_studio --env=LABEL_STUDIO_BASE_DATA_DIR=/label-studio/data --env=OPT_DIR=/opt/heartex/instance-data/etc --env=SETUPTOOLS_USE_DISTUTILS=stdlib --env=HOME=/label-studio --workdir=/label-studio -p 8089:8080 --label='org.opencontainers.image.ref.name=ubuntu' --label='org.opencontainers.image.version=22.04' --runtime=runc -d heartexlabs/label-studio:latest

To stop the container:

docker stop label_studio

On next runs (start existing container):

docker start label_studio

Authors

License

Please check the MIT license that is listed in this repository.

About

App aiding in annotating objects in computer vision

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •